Vue lecture

Voici le premier kilogramme d’uranium extrait de l’eau de mer

Réaliser la transition énergétique avec, entre autres, des réacteurs nucléaires ? Cela suppose au préalable d’avoir de l’uranium, pour les alimenter en combustible. Et si le parc mondial actuel semble avoir des ressources disponibles pour sa durée de vie, cela coince dès lors que l’on envisage un parc qui se développe fortement dans le monde entier. Mais la Chine a une solution : l’uranium marin. Et elle a obtenu ses premiers résultats concrets.

Il y a dix-huit mois, nous vous avions parlé de cette étrange plate-forme en mer chinoise ; elle était destinée à mener des recherches sur l’extraction de l’uranium marin. Son existence avait été mise en lumière par Cao Shudong, directeur adjoint du spécialiste chinois de l’uranium CNNC, le 17 mai 2023 lors d’une conférence de la Seawater Uranium Extraction Technology Innovation Alliance (en français : Alliance de l’innovation technologique pour l’extraction de l’uranium marin).

La ressource n’a rien d’anecdotique. Jugeons-en : les océans contiennent naturellement de l’uranium à hauteur de 3 microgrammes par litre. Si cela semble peu, il faut le ramener au volume total des océans, qui est énorme, ce qui conduit à estimer à 4 milliards de tonnes l’uranium présent dans l’eau de mer, soit près de mille fois plus que les gisements conventionnels connus.

À lire aussi Perte de contrôle d’une mine d’uranium destinée aux centrales nucléaires françaises

La Chine obtient des résultats concrets

Reste à parvenir à extraire cet uranium. Pour ce faire, l’équipe du professeur Jiang Biao a conçu des systèmes de filtrage spécialisés. En forme de tube d’un mètre de haut, elle contient une membrane repliée dont la surface totale est équivalente à celle d’un terrain de football. Chaque cylindre est conçu pour absorber environ 600 g d’uranium sur sa durée de vie. Ces absorbants ont été placés sur une plate-forme dans le golfe de Bohai.

Quels seraient les résultats ? Pour le savoir, il faut creuser dans la presse chinoise. Il s’avère que Wang Chun, journaliste au « Science and Technology Daily » (journal officiel du ministère des Sciences et de la Technologie) les a rapportés [article en chinois]. L’équipe aurait déjà réussi à extraire 1 kg d’uranium de l’eau de mer. Mieux, elle a annoncé que le coût d’extraction serait d’environ 150 $ par kilogramme, soit de l’ordre du cours actuel de l’uranium (~ 130 $/kg). L’équipe envisage d’arriver à extraire une tonne d’uranium en 2026. Il s’agit bien sûr pour le moment de résultats à l’échelle expérimentale, et qui demanderaient à être confirmés.

Il faut noter que ces expérimentations s’inscrivent dans un plan bien plus vaste. En effet, dans le cadre de sa stratégie énergétique, la Chine prévoit de produire de manière continue de l’uranium marin à partir de la période 2036 – 2050, et ce, pour un prix aussi bas que 100 $/kg. L’uranium de la prochaine décennie sera-t-il chinois ?

L’article Voici le premier kilogramme d’uranium extrait de l’eau de mer est apparu en premier sur Révolution Énergétique.

La première méga-usine de batteries lithium-soufre du monde se trouvera en Californie

Aviez-vous entendu parler des batteries lithium-soufre ? Cette technologie encore peu connue est pourtant appelée à entrer massivement dans le marché. Et cela notamment grâce aux gigantesques investissements de la start-up californienne Lyten.

Lyten poursuit à plein régime son aventure industrielle. Fondée en 2021, la start-up vient d’annoncer la construction d’une gigafactory près de Reno, dans le Nevada. Il s’agit d’un investissement de plus d’un milliard d’euros, qui créera plus d’un millier d’emplois. La capacité de production sera à terme de 10 GWh/an, et la première tranche de l’usine est prévue pour démarrer en 2027.

Le lithium-soufre ? On peut s’en douter : c’est une autre variante du lithium-ion. Un accumulateur lithium soufre contient une anode composée de lithium, et une cathode constituée d’un composite contenant du soufre, en l’occurrence, pour Lyten, il s’agit de graphite nanostructuré. Comme pour toutes les autres batteries lithium-ion, le principe de fonctionnement repose sur l’échange d’ion lithium (Li+) entre la cathode et l’électrode. Lors de la décharge, les ions lithium viennent s’accumuler dans l’électrode contenant le soufre ; inversement, lors de la charge, les ions lithium se séparent du soufre et viennent retrouver l’électrode constituée de lithium.

À lire aussi Avec la batterie lithium-soufre, l’avion électrique n’est plus une utopie

Une technologie performante et permettant un approvisionnement plus local

La technologie lithium-soufre permet une importante densité d’énergie ; en effet ses composants, lithium, carbone et soufre, sont tous des éléments très légers. Lyten avance ainsi une masse 92 kg pour une batterie de 100 kWh, ce qui conduirait, toujours d’après le constructeur, à des batteries 75 % plus légères que les batteries LFP et 60 % plus légères que les autres types batteries lithium-ion.

La technologie permet également d’utiliser une plus grande part de matériaux abondants localement, à la différence des technologies utilisant par exemple du nickel, du cobalt ou du manganèse. Ce facteur, additionné à la stratégie industrielle de la start-up, permet à Lyten de s’affirmer comme étant le leader mondial de l’approvisionnement local. En outre, le soufre étant peu coûteux, les batteries pourraient être vendues à un prix plus faible que les technologies concurrentes. À noter toutefois que Lyten n’affiche pas beaucoup d’informations sur la durée de vie de ses batteries, laquelle est un probable point faible de cette technologie.

À lire aussi Des batteries lithium-soufre jusqu’à cinq fois plus efficaces que les accumulateurs lithium-ion

Le marché du lithium-soufre est en pleine expansion

Lyten fabrique déjà des composants dans son installation de San Jose en Californie, depuis mai 2023. Ses batteries lithium-soufre ont trouvé des applications dans les marchés de la micromobilité, de l’espace, des drones et de la défense, pour la période 2024-2025. La construction de la gigafactory va permettre d’accompagner la croissance de la demande.

Chrysler envisage d’utiliser les batteries de l’entreprise dans sa réédition de son modèle Halcyon ; cette solution leur permettrait de réduire de 60 % l’empreinte carbone de son concept. Rappelons en outre que Stellantis a également investi dans Lyten, au moment de sa levée de fonds de 425 millions de dollars en 2015.

L’article La première méga-usine de batteries lithium-soufre du monde se trouvera en Californie est apparu en premier sur Révolution Énergétique.

Comment ce réacteur au kérosène va réduire de 80 % ses émissions de gaz à effet de serre

Très critiqué pour sa consommation énergétique, le secteur de l’aviation n’est pas en reste concernant les économies d’énergie. En témoigne ce programme, qui ouvre la porte à l’aviation du futur, économe et compatible avec des carburants durables.

Une diminution de 20 % de la consommation de carburant et une baisse équivalente des émissions de CO2, cela ressemble à une promesse intéressante pour un nouveau moteur d’avion. Et c’est d’autant plus intéressant lorsque la promesse va encore plus loin : une diminution de plus de 80 % des émissions de gaz à effet de serre, en assurant que le moteur soit compatible avec des carburants dits durables, à savoir le SAF* et l’hydrogène. Et s’il en fallait plus, le moteur est aussi prévu pour être compatible avec une hybridation électrique.

Telles sont les promesses du programme Rise (pour Revolutionary Innovation for Sustainable Engines, soit en français innovation révolutionnaire pour des moteurs durables). Rise est développé par CFM International, une joint-venture franco-américaine qui réunit Safran et General Electric Aviation (GE). Un programme bien doté, de plus de 10 milliards d’euros, et qui implique, chez Safran, plus de mille ingénieurs.

À lire aussi Des carburants pour voler « vert »

Une architecture révolutionnaire

Pour parvenir à ces performances, sans dégrader pour autant la vitesse de l’avion, les concepteurs se sont basés sur une architecture de type « open fan ». Dans ce concept, les soufflantes sont de beaucoup plus gros diamètre et ne sont pas carénées ; cette technologie avait été utilisée dans les années 80 par GE et depuis 2017 par Safran. Par ailleurs, d’importantes innovations concernant les matériaux permettront d’améliorer les performances (aubes de soufflante en composites, alliages métalliques ou composites à matrice céramique…).

C’est un programme tout à fait concret, puisque Safran a dévoilé mercredi 27 novembre son premier démonstrateur de compresseur basse-pression. Le programme a débuté en 2021. Les essais au sol et en vol sont prévus pour 2025 et 2027, avec notamment le lancement, en 2022, d’un programme de démonstration en vol d’un A380 équipé d’un moteur Open Fan, et d’un démonstrateur hydrogène. Par ailleurs, une vaste campagne d’essais est programmée à l’ONERA, le centre français d’études aérospatiales, pour des tests en soufflerie entre 2023 et 2028 (campagne appelée EcoEngine). L’entrée en service commercial n’est toutefois pas prévue pour demain : c’est en effet 2035 qui est en ligne de mire.

* Le SAF est un acronyme anglais pour Sustainable aviation fuel, soit en français Carburant d’aviation durable ou CAD. Ces carburants viennent de différentes sources : conversion des graisses usagées, agrocarburants, ou combustibles de synthèse, dont notamment les e-carburants, produits à partir d’électricité.

L’article Comment ce réacteur au kérosène va réduire de 80 % ses émissions de gaz à effet de serre est apparu en premier sur Révolution Énergétique.

Chauffage au bois : aides et subventions, ce qui change en 2025

Le chauffage au bois permet de produire de la chaleur à partir de ressources locales (les forêts françaises sont relativement bien portantes), renouvelables et en principe neutres en carbone – même si ce point fait l’objet de nuances. La conversion d’un système de chauffage aux énergies fossiles vers le bois implique toutefois des coûts significatifs, que les aides publiques peuvent considérablement réduire. Ces aides sont nombreuses et complexes, et changent souvent ; nous faisons sur les évolutions prévues en 2025.

Pour commencer, présentons les conditions nécessaires pour bénéficier des aides financières. Tout d’abord, l’appareil de chauffage au bois doit montrer une bonne performance environnementale ; pour ce faire, il doit bénéficier du label Flamme verte, un label lancé en 2010 par l’Ademe (Agence de la transition énergétique), ou afficher une performance égale ou supérieure. En deuxième lieu, l’installation doit être réalisée par un professionnel RGE (Reconnu garant de l’environnement).

Ces conditions ouvrent plusieurs types d’aides, sous trois formes : MaPrimeRénov’, les Certificats d’économie d’énergie (CEE) et sa bonification (le Coup de pouce chauffage), l’éco-prêt à taux zéro et enfin les autres aides (notamment locales).

À lire aussi Se chauffer au bois, plus polluant que rouler en voiture diesel ?

🪵 MaPrimeRénov’ : incertitudes pour 2025

MaPrimeRénov’ est une subvention versée par l’Anah (Agence nationale de l’habitat). Mise en place au 1ᵉʳ janvier 2020, il s’agit aujourd’hui d’une des principales aides à la rénovation énergétique de logements construits depuis au moins 15 ans. Depuis 2024, MaPrimeRénov a évolué, et est déclinée, pour le logement individuel, sous la forme de deux parcours : le « Parcours par geste » (destiné à des travaux limités), et le « Parcours accompagné » (destiné aux rénovations dites « d’ampleur », c’est-à-dire permettant de gagner deux classes énergétiques).

En ce qui concerne le bois énergie et le parcours par geste, la liste des appareils concernés par les aides font l’objet d’une liste définie par le gouvernement : poêle et cuisinière à bûches, poêles et cuisinière à granulés, chaudière bois à alimentation manuelle ou automatique, foyer fermé et insert à bûches ou à granulés. Le montant de la subvention est notamment dépendant de conditions de ressources et du nombre de personnes qui constituent le ménage (conduisant à un classement par couleurs, par ordre de revenu croissant : bleu, jaune, violet et rose). Selon les revenus et la nature chauffage au bois installé, les subventions peuvent aller aujourd’hui de 600 € à 7 000 €.

À lire aussi Chauffage au bois : voici 4 conseils efficaces pour moins polluer

En cette fin 2024, le gouvernement Barnier a annoncé de sévères réductions du budget de MaPrimeRénov’. Toutefois, si l’on en croit les propos des ministres, cet ajustement de budget est une adaptation à l’usage, et elle ne devrait donc pas affecter l’enveloppe réellement utilisée en pratique. Ainsi, les règles d’attribution des subventions pour les subventions MaPrimeRénov’ par geste devraient être sensiblement identiques en 2025, par rapport à fin 2024. Il est difficile d’être tout à fait affirmatif sur les modalités qui seront définitivement retenues l’année prochaine.

🪵 Les certificats d’économie d’énergie (CEE) en 2025

Ces certificats sont des aides financières proposées par les fournisseurs d’énergie pour des travaux de rénovation énergétiques ; tous les fournisseurs d’énergie sont concernés : électricité, gaz, GPL, fioul domestique, chaleur et froid. Ces aides sont définies par décrets, au cours de cycles de quatre ans. Le régime applicable aujourd’hui est celui dit « P5 », c’est-à-dire la cinquième période. Il couvre la période allant du 1ᵉʳ janvier 2022 jusqu’à fin 2025.

Les CEE sont destinées aux propriétaires ou locataires d’une maison individuelle construite depuis plus de 2 ans. Leur montant est dépendant des fournisseurs d’énergie et peuvent dépendre des revenus ; il est donc recommandé de mettre en concurrence plusieurs fournisseurs. Ces primes sont cumulables avec MaPrimeRénov’. Le gouvernement décrit les conditions d’octroi sur une page dédiée. En ce qui concerne le chauffage au bois, les CEE peuvent être octroyés pour l’installation d’une chaudière biomasse individuelle ou d’un appareil indépendant de chauffage au bois (poêle, foyer fermé ou insert, cuisinière).

Les CEE sont applicables jusqu’à fin 2025, elles ne devraient donc pas changer entre 2024 et 2025.

À lire aussi Installer un filtre à particules sur sa cheminée au bois, c’est possible ?

🪵 La prime coup de pouce énergie en 2025

La prime Coup de pouce est une bonification des CEE et elle s’applique pour le remplacement d’une vieille chaudière au charbon, fioul ou gaz par une chaudière biomasse performante, ou un équipement indépendant de chauffage au charbon par un appareil de chauffage au bois dit très performant. Son montant est au minimum de 4 000 € dans le premier cas, et de 800 € dans le second cas ; le montant définitif dépend du niveau de revenus du ménage, et est destinée aux propriétaires ou locataires d’une maison individuelle construite depuis plus de 2 ans. Les opérations doivent être engagées avant le 31 décembre 2025 et achevés au plus tard le 31 décembre 2026.

Les conditions d’application de cette prime sont détaillées par le gouvernement, mais il est à noter que les pages officielles sont en cours de mise à jour à la suite de la publication de l’arrêté du 18 novembre 2024 ; ce nouvel arrêté ne semble pas toutefois concerner le chauffage au bois.

Note : la prime Coup de boost Fioul, qui s’appliquait au remplacement d’une chaudière au fioul par un système plus performant n’est plus applicable depuis le 30 juin 2023.

À lire aussi Cette centrale électrique au bois voudrait dévorer les forêts françaises

🪵 Les autres aides

Un chantier de rénovation énergétique bénéficie d’un taux de TVA réduit, à savoir 5,5 %. À ce jour, cet avantage n’est pas remis en cause par le gouvernement. À noter que le dispositif des chèques énergie, destiné à aider les ménages modestes à faire face à la flambée des prix des combustibles en 2022, a pris fin le 31 mai 2023.

Enfin, certaines collectivités territoriales peuvent distribuer des aides locales, par exemple, pour financer le remplacement d’un vieux chauffage au bois par un système plus moderne.

L’article Chauffage au bois : aides et subventions, ce qui change en 2025 est apparu en premier sur Révolution Énergétique.

Chauffage au bois : voici 4 conseils efficaces pour moins polluer

Le bois énergie est assurément une énergie renouvelable, mais cela n’implique pas qu’elle soit sans impact sur la santé et l’environnement. Tout dépend en fait de la façon dont il est employé. On vous dit tout.

La combustion du bois produit des fumées qui peuvent contenir, selon les situations, toute une variété de substances potentiellement nocives. Outre la vapeur d’eau et le dioxyde de carbone (CO2), on y trouve des polluants atmosphériques toxiques comme les dioxines, le benzène, le monoxyde de carbone (CO), les composés organiques volatiles (COV) et les oxydes d’azote (NOx), ou encore des particules fines (PM10) et ultrafines (PM2,5).

Pour réduire significativement ces émissions, il existe heureusement de nombreuses bonnes pratiques. Notez que les conseils ci-dessous sont plutôt destinés aux utilisateurs de bois bûche, mais certains restent toutefois valables pour les autres types de bois-énergie (par exemple pellets et granulés).

À lire aussi Se chauffer au bois, plus polluant que rouler en voiture diesel ?

🔥 Conseil n°1 : se procurer un bois très sec et de bonne qualité

Pour le chauffage, il est préférable de choisir les essences d’arbre les plus adaptées ; pour ce faire, l’Office national des forêts (ONF) propose une liste. Les meilleures essences sont les feuillus dits durs (ex : chêne, charme, hêtre, frêne), car, par unité de volume (le stère), ils sont les plus denses et ce sont ceux qui peuvent produire le plus d’énergie.

Deux précisions sont toutefois apportées par l’INERIS. En premier lieu, le chêne est une essence considérée comme très émissive si l’apport en air est insuffisant ; par ailleurs, il ne faut pas utiliser des combustibles de type déchet de bois traités, dont la combustion peut émettre des substances toxiques (dioxines).

Viennent ensuite les feuillus dits tendres (ex : bouleau, platane, peuplier), moins denses en énergie. Enfin, les épineux et résineux (ex : pins, épicéas, sapins, cèdres) sont déconseillés, car ils brûlent très vite et tendent à encrasser les conduits d’appareil avec les résidus de combustion de leur résine.

À lire aussi Installer un filtre à particules sur sa cheminée au bois, c’est possible ?

Autre critère : le bois doit être très sec, car la vaporisation de l’eau qu’il contient absorbe de l’énergie, qui est alors perdue pour le chauffage, et évacuée par les fumées. De plus, la combustion d’un bois sec réduit de 70 % les émissions de polluants. En pratique, le taux d’humidité du bois doit être inférieur à 20 %, ce qui implique soit de l’acheter sec, soit de prévoir un temps de séchage important à l’air ambiant, de l’ordre de 12 à 18 mois, voire plus. Il existe également du bois dit « extra-sec » ou « hautes performances », dont le séchage s’étend sur 24 mois ou accéléré en séchoir et dont le taux d’humidité est bien inférieur à 20 %. Il est possible de vérifier le taux d’humidité de son bois au moyen d’un capteur spécifique.

Par ailleurs, la proximité de la source de production du bois est importante afin de limiter la pollution due au transport du bois. Enfin, pour limiter l’impact sur l’environnement de l’exploitation des forêts, il importe de s’assurer que le fournisseur met en œuvre de bonnes pratiques. Pour ce faire, il existe des certifications, comme les labels PEFC (Programme de reconnaissance des certifications forestières) et FSC (Forest Stewardship Council) ; l’ONF s’est particulièrement engagé pour accompagner les forestiers sur ces sujets.

🔥 Conseil n°2 : assurer la bonne évacuation des fumées

Dans un logement, le risque provient surtout d’une mauvaise évacuation des fumées. Les appareils les plus récents (par exemple labellisés Flamme Verte) sont tous équipés de conduits d’évacuation qui permettent d’évacuer correctement les fumées à l’extérieur. Ainsi, les poêle à bois, les inserts de cheminée et les chaudières à bois récents éliminent à priori ce risque.

Ceci n’est vrai toutefois qu’à la condition que le matériel soit convenablement entretenu. Ainsi, en particulier, le ramonage de la cheminée doit être fait régulièrement pour limiter les risques et la pollution. En France, le ramonage est obligatoire au moins une fois par an (L. 2213-26 du code général des collectivités territoriales) ; à noter que certaines préfectures requièrent une fréquence plus élevée, de deux fois par an.

L’INERIS a récemment alerté que la moitié des appareils de chauffage au bois étaient anciens, c’est-à-dire vieux de plus de 15 ans. Pour ces derniers, les fumées pourraient ne pas être correctement évacuées. Ils peuvent également être les plus polluants ; ainsi dans un courrier du 20 novembre 2024, le Syndicat des énergies renouvelables (SER) a indiqué à ce sujet que ce parc ancien est « le réel émetteur des particules fines ».

À lire aussi Chauffage au bois : économique et écologique, à condition de respecter les bonnes pratiques

🔥 Conseil n°3 : utiliser convenablement son appareil de chauffage

Outre les recommandations précédentes, la façon d’utiliser en pratique son appareil au bois n’est pas sans influence sur l’émission de polluants. Ainsi, d’après l’INERIS, il est préférable d’appliquer les bonnes pratiques suivantes :

  • charger convenablement le foyer : il faut éviter la surcharge, mais aussi prévoir du combustible à la bonne dimension (pas de trop grosses sections), tout en évacuant régulièrement les cendres pour permettre une bonne circulation de l’air. De plus, il est conseillé de recharger le foyer au moment où les flammes disparaissent au profit de la braise ;
  • allumer le feu par le haut réduit de 30 à 50 % les émissions grâce au réchauffement et au séchage des bûches, ainsi qu’à la combustion des gaz émis par les bûches ;
  • favoriser le fonctionnement à vive allure plutôt qu’à allure réduite (en réglant le débit d’arrivée d’air), au cours de laquelle la combustion se fait avec flamme (+110 % d’émissions de polluants avec une combustion sans flamme). Pour réduire la température, il est ainsi préférable d’utiliser une demi-charge de bois, plutôt que l’allure réduite de l’appareil.

🔥 Conseil n°4 : réduire sa consommation d’énergie et choisir le bon équipement

Réduire sa consommation d’énergie, c’est réduire la quantité de bois brûlé, et donc la quantité de polluants générés. La consommation d’énergie pour le chauffage est issue de plusieurs facteurs :

  • l’environnement climatique (température l’hiver, et durée de la saison froide) ;
  • la consigne en termes de température dans le logement ;
  • l’isolation thermique du logement, entre ses pièces intérieures et son environnement extérieur ;
  • le bon dimensionnement et le rendement du système de chauffage au bois.

On ne peut pas agir sur le premier facteur, bien entendu ; il serait quelque peu malvenu en effet de conseiller de déménager pour réduire ses besoins de chauffage. Quoi qu’il en soit, il est possible d’agir sur les autres facteurs. Viser une température cible de 19 °C est une manière de ne pas chauffer excessivement, au regard des normes (obligatoires ou non, en fonction du fait qu’on est propriétaire ou locataire, ou dans une copropriété ou non). Par ailleurs, la réalisation de travaux d’isolation est de nature à réduire de manière significative la consommation de bois, et donc l’émission de polluants.

À lire aussi Le bois, une énergie pas si renouvelable ?

Concernant le dernier point, il concerne le choix du système de chauffage, et son remplacement s’il est trop ancien. Ainsi il est préférable d’utiliser un appareil fonctionnant porte fermée (insert ou poêle) plutôt qu’un foyer ouvert. De plus, la puissance de l’appareil et le tirage de sa cheminée doivent être convenablement dimensionnés pour assurer la température souhaitée par l’utilisateur ; en effet, si la chaleur générée par l’appareil est trop importante, cela conduira à fonctionner à allure réduite, laquelle est à éviter.

Enfin, un appareil de bonne qualité récent aura un très bon rendement. Le rendement est le rapport entre l’énergie utile pour le chauffage, et l’énergie initialement contenue dans le bois. Pour consommer le moins de bois possible, ce rendement doit être le plus haut possible. Ce rendement est supérieur à 80 % pour les appareils fermés récents, contre seulement 10 % pour les foyers ouverts à l’ancienne.

Vous l’aurez constaté à la lecture des conseils ci-dessus : la plupart permettent justement d’optimiser au mieux, en pratique, le rendement. Et donc, au total, l’émission de fumées, donc la pollution.

ℹ️ Cet article comporte un ou plusieurs liens d’affiliation, qui n’ont aucune influence sur la ligne éditoriale. C’est l’un des modes de financement de notre média qui nous permet de vous proposer gratuitement des articles de qualité.

L’article Chauffage au bois : voici 4 conseils efficaces pour moins polluer est apparu en premier sur Révolution Énergétique.

Le gouvernement veut-il vraiment la peau de MaPrimeRénov’ ?

MaPrimeRénov’ est un dispositif bien connu permettant aux particuliers d’obtenir des subventions pour leurs projets de rénovation énergétique. Son historique a toutefois été pour le moins chaotique courant 2024, avec l’annonce d’importantes réductions de budget. Une situation à l’origine de vives inquiétudes sur la stabilité, voire la pérennité, du dispositif. Avec à la clé, une réticence des investisseurs à lancer de nouveaux projets.

Le sujet s’est corsé le 10 octobre dernier, lorsque Laurent Saint-Martin, ministre du Budget, a présenté le projet de loi de finances (PLF). Ce projet a beaucoup fait parler de lui en matière de rénovation énergétique, car il prévoyait une diminution drastique de l’enveloppe allouée au dispositif MaPrimRénov’.

Un régime pour le moins draconien, en effet. En 2024, le budget avait été initialement fixé à 5 milliards d’euros, avant d’être raboté à 4 milliards en février 2024. Pour 2025, il serait abaissé encore à 2,5 milliards d’euros, soit une baisse de 50 % par rapport au budget initial de 2024. Rappelons qu’en 2023, le budget de MaPrimeRénov’ était de 3,4 milliards ; le nouveau budget pour 2025 serait donc inférieur de près de 1 milliard d’euros à celui de 2023.

À lire aussi Comment Ma Prime Rénov’ laisserait des centaines de particuliers sur le carreau

Un budget 2025 bien difficile à construire

En difficultés pour la construction de son Projet de loi finances (PLF), le gouvernement justifie cette réduction de plusieurs manières. En premier lieu, il s’agirait du constat d’une sous-consommation du budget de MaPrimeRénov’ en 2024 ; ce constat a conduit Laurent Saint-Martin à parler, le 10 octobre dernier « d’adapter les crédits aux besoins réels ». En deuxième lieu, cette baisse s’alignerait avec l’objectif du gouvernement de réduire les dépenses de l’État de 60 milliards d’euros et de plafonner le déficit public à 5 % du PIB.

À noter que le ministre a précisé que cette enveloppe pourrait évoluer si nécessaire. Le ministre de l’Économie ainsi que celui du Logement ont confirmé tous deux qu’elle pourrait évoluer à la hausse si les besoins de financement en faisait autant.

À lire aussi 5 raisons de subventionner les climatiseurs de toute urgence

Les atermoiements de 2024 ont échaudé le secteur

Les plans du gouvernement sont toutefois très variables et pas faciles à suivre. Rappelons ses atermoiements en 2024. Le gouvernement avait initialement prévu d’exclure la rénovation par geste du dispositif MaPrimeRénov’ avec en ligne de mire l’objectif de favoriser les rénovations d’ampleur ; cet objectif avait été confirmé par la publication d’un décret le 15 juillet 2024 (n°2024-819) qui visait à augmenter les plafonds d’aides pour ces dernières.

Depuis le 15 mai, la rénovation par geste était toutefois revenue dans les faveurs du gouvernement ; Christophe Béchu, alors ministre de la Transition écologique avait en effet déclaré : « Mieux vaut une rénovation globale à un mono-geste, mais mieux vaut un mono-geste plutôt que pas de rénovation du tout. ». Le secteur de la rénovation énergétique s’en est bien sûr réjoui, tout en relevant que ces annonces contradictoires étaient nocives au lancement des projets. Elles laissent en effet les investisseurs potentiels dans l’expectative de changements difficiles à maîtriser.

À lire aussi Isolation thermique : tout faire soi-même est-il intéressant ?

Le besoin de stabilité est reconnu

Résultat probable de ces revirements, le nombre de dossiers de rénovation est en berne, avec 78 000 logements rénovés au premier semestre 2024, pour un objectif de 350 000 par an. Valérie Létard, ministre du Logement, relève en revanche les très bons chiffres du troisième trimestre : 71 000 dossiers pour les rénovations d’ampleur et 173 000 dossiers pour les rénovations mono-geste.

Le 12 novembre 2024, la ministre a confirmé en outre que les « les mono-gestes de rénovation, ciblés mais efficaces, seront toujours éligibles au dispositif MaPrimeRénov’ ». Le besoin de stabilité est en outre reconnu par le gouvernement ; Valérie Létard précise en effet : « Je suis particulièrement mobilisée pour garantir la stabilité des aides du dispositif MaPrimeRénov’, attendue à la fois par les professionnels du secteur et les propriétaires ». Si l’on en croit les annonces actuelles du gouvernement, le dispositif serait donc pour l’essentiel maintenu en 2025, dans sa version qui a cours depuis le 15 mai 2024.

Notons que cette version amène en outre à quelques simplifications, dont notamment l’accès à MaPrimeRénov’ par geste pour les maisons individuelles classées F et G, ainsi que le fait qu’il n’est plus besoin de fournir un DPE avant réalisation des travaux.

L’article Le gouvernement veut-il vraiment la peau de MaPrimeRénov’ ? est apparu en premier sur Révolution Énergétique.

Ce réacteur nucléaire français pourrait chauffer à lui seul une capitale européenne

Un réacteur nucléaire est avant tout un moyen de chauffer de l’eau. En règle générale, cette eau est transformée en vapeur pour mettre en mouvement une turbine à vapeur qui, couplée à un alternateur, va produire de l’électricité. Mais pourquoi ne pas en rester à la génération de chaleur et coupler le réacteur à réseau de chauffage urbain ? C’est le concept de Calogena, et la ville d’Helsinki est très intéressée par le chauffage urbain nucléaire.

À travers sa start-up Calogena, le groupe Gorgé développe un petit réacteur nucléaire (en anglais SMR, pour Small Modular Reactor) dédié à la production de chaleur à basse pression et basse température (autour de 5 bar et 100 °C). Cette orientation permet de concevoir un réacteur très simple et de toute petite taille. Aujourd’hui fixée à 30 MW thermiques pour le modèle dit « Cal-30 », sa puissance est toutefois significative : elle pourrait satisfaire aux besoins de chauffage de 20 000 foyers.

Très récemment, le groupe Gorgé a indiqué par un communiqué de presse avoir franchi une étape majeure. L’entreprise a en effet déposé auprès de l’Autorité de sûreté nucléaire (ASN) française son Dossier d’option de sûreté (DOS). Une étape cruciale, s’il en est : c’est ainsi qu’est lancée la pré-instruction du concept par le gendarme français du nucléaire. Cette étape emmène vers la concrétisation du projet, puisqu’il permet de préparer la Demande d’autorisation de création (DAC), dans l’objectif de construire une tête de série. Fondée en 2021, Calogena envisage en effet un déploiement industriel de son SMR pour 2030.

À lire aussi Ce réacteur nucléaire veut chauffer l’eau de votre douche et de vos radiateurs

Helsinki lancé vers le chauffage urbain nucléaire

Helsinki est dotée du deuxième plus grand réseau de chaleur du monde, et elle s’est donnée pour objectif de décarboner entièrement sa production, aujourd’hui assurée par le gaz naturel et la biomasse. Et pour ce faire, elle s’intéresse au chauffage urbain par l’énergie nucléaire.

Citons quelques chiffres concernant le projet d’Helsinki : un besoin de 400 MW de chaleur, entre 10 et 15 SMR, un marché de l’ordre de 1,5 milliard d’euros et une mise en service qui se produirait justement en 2030. Le groupe Gorgé a bien entendu signifié son intérêt, puisque ce projet démontre qu’il existe bien un marché pour son concept.

Calogena fera face toutefois à une forte concurrence. La société finlandaise Steady Energy propose en effet de son côté le LDR-50, un réacteur de 50 MW thermiques, et fonctionnant à 10 bar et 150 °C. Disponible dans sept ans, le réacteur aurait un prix unitaire de l’ordre de 100 millions d’euros. Une concurrence qui reste toutefois teintée de coopération, puisque les deux projets Calogena et Steady Energy sont par ailleurs partie prenant du projet CityHeat. Ce projet a été sélectionné en octobre 2024 par la Commission européenne lors de l’appel à projet au sein de l’Alliance européenne sur les SMR.

À lire aussi Voici les 5 grandes transformations de l’énergie nucléaire en France

L’article Ce réacteur nucléaire français pourrait chauffer à lui seul une capitale européenne est apparu en premier sur Révolution Énergétique.

Panneaux solaires sur les parkings : qui sera obligé d’en installer ?

Le photovoltaïque prend de la place, c’est une certitude. Son développement peut donc entraîner de sérieux conflits d’usages, et il n’est pas toujours vertueux d’implanter des panneaux à la place de forêts. Une solution : utiliser les espaces déjà artificialisés. Mais ces derniers ont parfois un usage et un propriétaire, qui n’a pas forcément prévu d’y ajouter une centrale photovoltaïque. La loi entend les contraindre à le faire, notamment sur les grands parkings. Mais, nous le verrons, c’est plus facile à dire qu’à faire.

Le 10 mars 2023, a été votée la loi relative à l’accélération des énergies renouvelables (loi n°2023-175). Elle prévoit des mesures visant pour l’essentiel à simplifier les procédures d’autorisation, à mieux planifier le déploiement et à mieux partager la valeur à l’échelle locale, et, enfin à diriger les nouveaux projets vers les terrains déjà artificialisés.

C’est du fait de ce dernier point réglementaire que se trouvent impliqués les parkings, et l’opportunité de les doter d’ombrières photovoltaïques. Leur sort est désormais fixé, en principe, par le décret n°2024-1023 du 13 novembre 2024. Seize articles donc, qu’il convient de décrypter.

Le principe fixé par la loi

Les parcs de stationnement concernés sont les parkings extérieurs (c’est-à-dire non intégrés dans un bâtiment) dont la surface est supérieure à 1 500 m2. Le calcul de ce seuil fait l’objet d’exigences spécifiques, détaillées dans le décret, qui concerne la comptabilisation des différents espaces, par exemple : espaces verts, espaces de manutention et zones proches de substances dangereuses. La loi requiert qu’au moins la moitié de cette surface soit couverte d’ombrières intégrant une centrale de production d’énergie renouvelables.

À noter que la loi prévoit un calendrier de déploiement assez serré : elle est applicable à partir du 1ᵉʳ juillet 2026 pour les parkings dont la superficie est égale ou supérieure à 10 000 m2, et à partir du 1ᵉʳ juillet 2028 pour ceux dont la surface est comprise entre 1 500 et 10 000 m2. La loi précise également des sanctions pouvant aller jusqu’à 40 000 € par an.

À lire aussi Les supermarchés exigent des aides pour installer des panneaux solaires sur leurs parkings

Une longue liste d’exceptions à l’obligation

Qui dit loi, dit aussi une longue liste d’exceptions. Ces exceptions concernent, par exemple, les cas où une installation photovoltaïque ne serait pas réalisable techniquement, pour des raisons de nature de sol, ou d’incompatibilité avec l’usage initial de stationnement. De même, sont exemptés les cas d’ombrières qui porteraient un préjudice financier trop important au gestionnaire du parking, comme un coût d’investissement excessif, ou un ensoleillement insuffisant. Il est toutefois nécessaire, pour pouvoir bénéficier de ces exemptions, de démontrer ces impossibilités techniques ou financières, au travers de conditions décrites dans le décret, et d’études réalisées par des tiers accrédités.

Le décret exempte également les ombrières photovoltaïques qui seraient de nature à accroître un risque (naturel, technologique, ou liés à la sécurité civile ou nationale), ou à porter préjudice à l’environnement. De même, sont exemptés des terrains protégés au titre du patrimoine, ou de l’environnement (par exemple, des parcs nationaux). Par ailleurs, si un parking bénéficie d’ores et déjà d’un ombrage du fait d’arbres préexistants, il peut se trouver exempté, sous certaines conditions, encore une fois (proportion de surface, nombre d’arbres par place de stationnement, …)

Cet inventaire n’est pas exhaustif. Il existe d’autres cas et critères. Vous l’aurez compris, il n’est pas tout à fait simple de délimiter les cas où l’obligation s’applique de ceux où le parking pourra être exempté. Il est donc difficile de prévoir quelle part du gisement constitué par ces terrains déjà artificialisés sera effectivement affectée à la production énergétique. Et donc dans quelle mesure les ombrières participeront en pratique au mix énergétique français.

L’article Panneaux solaires sur les parkings : qui sera obligé d’en installer ? est apparu en premier sur Révolution Énergétique.

Voici le plus puissant kit solaire prêt-à-brancher du monde

Les kits solaires sont d’une facilité d’installation incomparable. Problème : ils sont limités à de petites puissances, généralement inférieures à 1 kWc, nettement insuffisantes pour couvrir les besoins d’un foyer moyen. Mais c’est sans compter sur le « petit » nouveau d’Indielux et EPP Solar. Ces deux sociétés mettront prochainement en vente ce qu’ils décrivent comme le plus grand système photovoltaïque plug and play du monde.

La description du produit a tout pour plaire. Il s’agit d’un système dont la puissance est comprise entre 3 et 6 kWc. Constitué de panneaux photovoltaïques bifaciaux, son rendement est amélioré, pour peu qu’il soit disposé de façon à pouvoir capter la lumière sur les deux faces du panneau. Est annoncée une production d’électricité pouvant aller jusqu’à 6,6 MWh par an. De plus, atout de taille, l’ensemble est équipé d’une batterie LFP compatible, dont la capacité, selon les options, est comprise entre 5,1 et 25,6 kWh. Cela représente ainsi l’équivalent d’environ 25 à 140 % de la production quotidienne moyenne des panneaux.

Ce produit est issu d’une collaboration entre deux sociétés allemandes : Indielux, spécialisée dans la production de systèmes d’autoproduction domestiques, et EPP Solar, un distributeur de solutions liées à l’énergie solaire. Indielux a fourni la technologie de pilotage Ready2plugin et EPP Solar s’occupera, en exclusivité, de la distribution en Europe – sont prévus pour le moment : Allemagne, France, Autriche, Pologne et Espagne. Les prix débuteront à 4 700 € ; EPP Solar promet des économies allant jusqu’à 55 % par rapport aux fournisseurs traditionnels.

À lire aussi Panneaux solaires à prix cassés : ce site propose un kit solaire de 3 kW à moins de 1 000 €

Au cœur du concept, une technologie de pilotage innovante

Le produit est plug and play, tout comme les kits solaires de plus petite taille, et il ne nécessite pas l’intervention d’un électricien pour être installé. Toutefois, sa grande puissance a conduit à mettre en œuvre des modalités de pilotage particulières. C’est la technologie ready2Plugin, développée par Indielux, et intégrée avec un onduleur de marque Growatt (WR SPH 3000 TL BL-UP), qui permet d’intégrer un système de si grande taille dans une installation en autoconsommation. Cette technologie permet d’autoconsommer jusqu’à 2 kW par le biais d’une prise conforme ; il est prévu également une prise dite « de secours » pouvant aller jusqu’à 3 kW.

Par ailleurs, le système de pilotage permet de ne pas injecter sur le réseau plus de 800 W, valeur qui est la limite légale en Allemagne pour une installation de ce type. Les fournisseurs ne précisent pas toutefois comment sera adapté le système pour les autres pays, où les limites officielles sont différentes.

À lire aussi On a testé le panneau solaire Lidl à 199 €

L’article Voici le plus puissant kit solaire prêt-à-brancher du monde est apparu en premier sur Révolution Énergétique.

Ce suiveur solaire low-tech fait exploser la production des panneaux photovoltaïques

Les suiveurs ou trackers solaires sont des systèmes bien connus. Ils ont pour objectif d’augmenter la production des panneaux photovoltaïques en les orientant au mieux tout au long de l’année, voire de la journée. Ils sont en revanche réputés coûteux et complexes. Sauf lorsque le low-tech s’invite dans l’équation. Voici donc Zenitrack.

À nos latitudes, la hauteur du soleil sur l’horizon varie au cours des saisons. Direction plein sud et au midi solaire, elle dépasse 60° le 21 juin, au solstice d’été, mais peine à atteindre 20° le 21 décembre, au solstice d’hiver. Une prise de photo du soleil aux différentes périodes de l’année construit dans le ciel une image en forme de « 8 », ou de symbole « infini », appelée l’analemme.

La production d’un panneau photovoltaïque est directement liée à l’angle entre le panneau et l’angle du soleil. Ainsi, l’angle optimal varie donc non seulement en fonction de l’heure de la journée, mais également au fur et à mesure de l’année et des saisons. Dans ce contexte, un tracker solaire a pour objectif de fournir au panneau une orientation optimale pour la production d’énergie, à tout moment. Un tel système implique toutefois une motorisation, des câbles électriques, des systèmes de transmission et des roulements. Une certaine complexité, donc, ainsi que, et c’est lié, un certain coût.

À lire aussi Un suiveur pas cher pour booster le rendement de vos panneaux solaires ?

Une solution minimaliste et performante

C’est là qu’intervient la solution Zenitrack, de l’inventeur Nicolas Ditleblanc. Il s’agit d’un tracker solaire low-tech qui vise au minimalisme. Il consiste en un support pour un panneau photovoltaïque de petite taille, qui y sera placé en orientation paysage. Ce support se place au sol, l’inventeur parle avec humour de « petite autoconsommation d’énergie potagère ».

Le support peut fournir au panneau une orientation variable, de 0° à 80°. Minimalisme oblige, c’est l’utilisateur qui, toutes les deux semaines, règle l’angle optimal du panneau, en fonction de la date et de la latitude de l’installation. Cet angle, c’est une application fournie par Zenitrack qui la spécifie. Et le réglage ne prend, selon Zenitrack, que quelques secondes.

À lire aussi Un suiveur pour panneaux solaires flottants, est-ce bien utile ?

En dépit de cette simplicité, les performances sont au rendez-vous. Elles permettent une très nette amélioration de la production du panneau, surtout au cours des mois d’hiver. Ainsi, entre novembre et janvier, le support permet une augmentation de la production de + 30 à 50 %, selon les essais menés par Nicolas Ditleblanc.

Le panneau est fixé à son support par le biais de pinces, sans perçage, et tous les panneaux sont compatibles sous réserve que le cadre ait une épaisseur comprise entre 15 mm et 40 mm. La fixation de l’ensemble au sol est à ajouter, soit sous la forme d’un lest de 110 kg, par exemple, des dalles de terrasse, soit sous la forme d’une fixation au sol qui est laissée à l’appréciation de l’utilisateur. Le support est fabriqué par Viollet Industries, une PME située en Haute-Savoie, et elle est conçue dans une approche de sobriété ; cela concerne notamment sa structure, constituée d’aluminium recyclé et recyclable.

La commercialisation a démarré

L’invention est aujourd’hui disponible chez plusieurs distributeurs, par exemple Sonepar ou Rexel. Sur ces plates-formes, le Zenitrack est vendu seul, ou sous forme de kit. Le prix du support est inférieur à 150 € HT. Contacté, Nicolas Ditleblanc nous a indiqué que la totalité du premier lot produit a été vendue et que le succès du déploiement dépendra en premier lieu de l’appropriation de la solution par les artisans électriciens ou chauffagistes.

Sur LinkedIn, Nicolas Ditleblanc communique régulièrement sur son invention et notamment les performances de son système de test. Si l’on aime l’inventivité et le low-tech, le suivre présente un intérêt certain.

L’article Ce suiveur solaire low-tech fait exploser la production des panneaux photovoltaïques est apparu en premier sur Révolution Énergétique.

Des moteurs nucléaires électriques pour les sondes spatiales : ce n’est pas une utopie

Sur Terre, le débat est vif : faut-il alimenter les voitures électriques avec de l’énergie solaire ou nucléaire ? En fait, il en est tout à fait de même dans l’espace, même si les raisons ne sont pas strictement les mêmes. Pour y voir un peu plus clair, l’Union européenne a commandé une étude sur la propulsion électrique nucléaire, mais dans l’espace. Le consortium, mené par l’électricien belge Tractebel vient de rendre son rapport.

Dans l’espace, comme sur Terre, ce sont les combustibles chimiques qui dominent : dans les énormes fusées, des composés chimiques (hydrogène, méthane, ou kérosène, par exemple) sont mélangés avec de l’oxygène et leur combustion génère de colossales quantités de chaleur. Cette chaleur est utilisée pour comprimer pour accélérer les gaz de combustion au travers d’une tuyère, générant ensuite le mouvement du véhicule par le principe d’action-réaction (troisième loi de Newton).

Plus récemment, des moteurs plus efficaces sont apparus, appelés « moteurs ioniques ». Ces propulseurs équipent aujourd’hui de nombreux satellites ou sondes interplanétaires ; citons par exemple, la sonde japonaise Hayabusa qui, en 2005, s’est presque posée sur l’astéroïde Itokawa, et ramenant ensuite sur Terre un échantillon de quelques grammes. Les moteurs ioniques utilisent diverses manières d’ioniser et d’accélérer un gaz, à partir d’une source d’énergie électrique, typiquement celle fournie par des panneaux photovoltaïques ; on parle alors de « propulsion électrique solaire » (en anglais Solar electric propulsion, SEP).

À lire aussi L’Europe veut construire des centrales solaires dans l’espace

La propulsion nucléaire plus efficace que la propulsion chimique

Cette méthode de propulsion est bien plus efficace que la propulsion chimique, ce qui se traduit par une vitesse d’éjection des gaz plus élevée, et au total, une réduction très significative de la quantité de carburant qu’il est nécessaire d’emporter. À noter que ce type de moteur n’est utilisé aujourd’hui que dans l’espace, et pas au cours des lancements.

La SEP a deux inconvénients principaux. D’une part, elle génère une poussée très faible, ce qui se traduit par des accélérations lentes, et d’autre part, lorsque l’ensoleillement diminue sensiblement lorsqu’on s’éloigne du soleil, il est nécessaire de prévoir des panneaux beaucoup plus grands, qui alourdissent le véhicule. Au-delà de l’orbite de Mars, le concept touche sa limite technologique et les gains issus de la propulsion électrique solaire s’estompent progressivement.

Une solution : alimenter les propulseurs électriques non pas avec de l’énergie solaire, mais avec de l’énergie nucléaire. Il s’agit là du concept dit « propulsion électrique nucléaire » (en anglais Nuclear electric propulsion, NEP). Et l’Europe a décidé d’évaluer cette solution.

À lire aussi Tourisme spatial : ces hypers riches consomment en 10 minutes autant d’énergie qu’un milliard d’humains en une vie

Le projet européen RocketRoll

L’Union européenne a en effet lancé une étude de faisabilité sur la propulsion électrique nucléaire dans l’espace. Initié par le département Future Space Transportation Systems (STS-F), le projet s’appelle RocketRoll, qui est un acronyme quelque peu complexe pour pReliminary eurOpean reCKon on nuclEar elecTric pROpuLsion for space appLications.

Il est mené par l’énergéticien belge Tractebel et regroupe de nombreux partenaires : le Commissariat à l’énergie nucléaire et aux énergies alternatives (CEA), ArianeGroup et Airbus, bien sûr très impliqués dans les technologies spatiales, et l’entreprise Frazer Nash Consultancy. Des experts de différents pays européens ont également été impliqués : chercheurs de l’université de Prague et de l’université de Stuttgart, et des ingénieurs du fournisseur de systèmes spatiaux OHB (OHB Czechspace et OHB System à Brême).

À lire aussi Centrale solaire spatiale : ces scientifiques qui continuent d’y croire

Un premier vol à moteur ionique d’ici 2035 ?

L’étude préliminaire a été lancée en 2023 et s’est terminée en octobre de cette année. Elle a conclu que la technologie de propulseur électrique nucléaire apportait bien les bénéfices escomptés en termes de vitesse, d’autonomie et de flexibilité. Cela concerne en particulier des concepts de remorqueur spatial (en anglais « in-orbit tug »), pour transporter de lourdes charges. Ce résultat n’est pas nouveau, admettons-le, car la NEP est étudiée depuis les années 1960. En revanche, elle a permis de produire une actualisation, en particulier dans le contexte technologique européen, ainsi qu’une feuille de route. Cette dernière indique la possibilité de faire voler un véhicule de test pour une mission dans l’espace d’ici 2035.

L’étude relève également les synergies avec d’autres aspects de missions spatiales. Des réacteurs nucléaires pourraient également produire de l’électricité pour les habitats de missions humaines sur Mars et sur la Lune, pour des missions robotisées plus loin (et plus ambitieuses) dans le système solaire, ou pour d’autres applications spatiales que la propulsion seule.

L’article Des moteurs nucléaires électriques pour les sondes spatiales : ce n’est pas une utopie est apparu en premier sur Révolution Énergétique.

Quels sont les différents systèmes de stockage d’énergie ?

Stocker l’énergie est un besoin indubitable de la transition énergétique. On peut toutefois se sentir parfois perdu, parmi tous les concepts, de différentes tailles, de différentes techniques, à différents niveaux de maturité technologique. Nous vous aidons dans cet article à bien comprendre chaque technologie.

Un système de stockage d’énergie est un système capable de manipuler les différentes formes de l’énergie : énergie électrique, énergie chimique, énergie potentielle de pesanteur, et tant d’autres. Le plus souvent, pour charger ce système, il faudra transformer l’énergie fournie à partir d’une source d’énergie disponible, mais peu stable et peu stockable, pour la convertir en une forme durable. Inversement, au cours de la décharge, elle sera « déconvertie » sous une forme où elle est plus utilisable.

Stocker l’énergie, ce n’est donc rien d’autre que cette capacité à jongler avec les différentes formes d’énergie. La classification des catégories de stockage d’énergie est ainsi éminemment liée à la forme de l’énergie qu’il contient. Sur la base de ce principe, nous pouvons proposer une classification sous la forme du tableau suivant :

Forme d’énergie Exemples de systèmes de stockage d’énergie
Énergie potentielle gravitationnelle Barrage, STEP, Tour gravitaire
Énergie cinétique Volant d’inertie
Énergie élastique Montre à ressort, stockage d’air comprimé souterrain (CAES)
Énergie thermique Cumulus, Ballon-tampon, stockage à sels fondus, stockage de chaleur souterrains (UTES),
Énergie latente Glacières, « Ballon de glace », autres divers projets de stockage de chaleur
Énergie chimique Hydrogène, carburants synthétiques (méthane, méthanol), accumulateurs électrochimiques (batteries plomb-acide, Li-ion), accumulateurs thermochimiques (ex sels)
Énergie électrique Bobine, Spéculatif : boucles de courant dans supraconducteur à température ambiante
Énergie potentielle électrique Condensateur, Supercondensateur
Énergie électromagnétique Spéculatif : mémoires photoniques de masse
Énergie nucléaire Spéculatif : transition d’isomères nucléaires
Masse-énergie Spéculatif : antimatière

Chaque type de stockage est détaillé dans la suite de l’article.

Énergie potentielle gravitationnelle

Pour stocker de l’énergie potentielle, il faut de la masse et la placer en hauteur. Typiquement, un tel système de stockage se trouve sous la forme d’un barrage retenant une très grande quantité d’eau. Un tel barrage se trouve sur le chemin d’un cours d’eau ; lorsqu’il est réversible et permet de transférer l’eau entre un bassin inférieur et un bassin supérieur, on parle de Station de transfert d’énergie par pompage (STEP). Une STEP est généralement construite comme une extension d’un barrage, et elle se trouve donc le long d’un cours d’eau. Il existe toutefois des STEP côtières, placée au sommet d’une falaise (le bassin inférieure étant au niveau de la mer, voir uniquement constitué par la mer elle-même) ; citons par exemple le cas bien connu d’El Hierro.

La matière dans laquelle est stockée l’énergie potentielle gravitationnelle peut être également solide. C’est le cas pour certains concepts dits de « tour gravitaire ». La plupart des projets de ce type sont à l’état de R&D, mais certains sont nettement plus avancés, au stade pilote, par exemple, le concept d’Energy Vault.

Pour le stockage à énergie potentielle gravitationnelle, l’énergie d’entrée est le plus souvent électrique, tout comme l’énergie de sortie. Anciennement, des variantes pouvaient proposer de l’énergie cinétique (mouvement) en sortie, par exemple, dans le cas d’un moulin. Ce sont des stocks généralement de très grande taille.

Énergie cinétique

L’énergie cinétique est le plus souvent stockée sous forme d’énergie de rotation, et c’est typiquement le cas des dispositifs appelés « volant d’inertie ». De tels systèmes sont basés sur un matériau pesant, susceptible de tenir vis-à-vis de la force centrifuge à de très hautes vitesses, exigeant ainsi des matériaux de haute technologie. Il existe des concepts avec des matériaux plus courants, mais tout aussi modernes, comme le volant d’inertie en béton d’Energiestro.

L’énergie en entrée du système est le plus souvent fournie sous forme électrique, alimentant un moteur électrique qui met en rotation le volant d’inertie, dans lequel est alors stockée de l’énergie cinétique (de rotation). Lorsqu’il faut extraire de l’énergie, le volant entraîne le moteur en sens inverse, qui devient alors un alternateur capable de produire de l’énergie électrique. Ces systèmes peuvent être de petite taille, ou de grande taille, mais ils ne peuvent rivaliser en pratique avec des barrages, par exemple, en termes de taille.

Il existe également des volants d’inertie purement mécaniques, dans le sens où ils récupèrent, stockent et restituent de l’énergie cinétique uniquement, comme dans le cas des volants moteur des véhicules ; il s’agit par ailleurs de l’utilisation la plus communément répandue aujourd’hui.

Énergie élastique

Il s’agit d’une des plus anciennes manières de stocker l’énergie ; citons par exemple les montres à ressort, qui permettaient de stocker, pour une certaine durée, l’énergie que l’on fournissait en remontant la montre à la main, en faisant tourner sa clé.

Plus moderne, l’exemple le plus typique d’un stock d’énergie élastique sont les concepts de stockages à air comprimé (CAES) ; on parle dans ce cas d’énergie pneumatique. Un simple réservoir d’air comprimé est un stock d’énergie, mais en ce qui concerne le stockage de très grande taille, de vastes projets souterrains sont encore au stade du prototype. Pour ces projets, on cherche essentiellement à stocker l’électricité. Le plus grand projet au monde est celui d’Hubei Yingchang, en Chine.

Citons également le projet MiniCat de Tata, qui était celui d’une voiture dont le réservoir contenait de l’air comprimé. Dans ce cas, l’énergie électrique est typiquement convertie en énergie élastique, pour fournir ensuite une énergie cinétique, de façon à mettre en mouvement un véhicule.

Énergie thermique

L’énergie thermique est un moyen très courant de stocker l’énergie. Le simple cumulus commandé aux heures creuses est un stockage thermique ; la chaleur du bois ou du soleil stockée dans un ballon-tampon en est une généralisation. Le principe est d’une grande simplicité : on chauffe de l’eau par exemple avec de l’électricité, on la conserve chaude dans un réservoir aussi isolé thermiquement que possible, et on récupère plus tard l’énergie thermique contenue dans l’eau chaude.

La bouillote est précisément un stock d’énergie thermique, tout comme l’astuce ancienne qui consistait à placer une brique chauffée au feu dans une couverture au fond du lit. Car l’eau n’est bien sûr pas le seul média pour stocker de la chaleur. Tout matériau peut être chauffé, ce qui revient à dire qu’il stocke de l’énergie sous forme thermique. Ainsi, pour donner un exemple, l’institut étasunien NREL envisage de stocker la chaleur dans le simple sable. Citons également les stockages dits par sels fondus, utilisés par exemple pour compenser l’intermittence, pendant la nuit, de centrales solaires thermiques de grande taille.

Il existe de nombreux projets de stockage massifs de la chaleur, notamment souterrains : il s’agit des concepts d’UTES (pour Underground Thermal Energy Storage, en anglais). La recharge des nappes géothermiques en fait partie. Citons également par exemple le projet de stockage souterrain d’AbSolar, en France.

Énergie latente

L’énergie latente est l’énergie qui est absorbée ou libérée lorsqu’un matériau change de phase, c’est-à-dire se transforme entre solide, liquide ou gazeux, et autres états de la matière (supercritique, plasma, ou différentes phases cristallines pour les solides). On stocke l’énergie sous cette forme, par exemple lorsque l’on utilise des « pains de glace », c’est-à-dire des réservoirs de liquide que l’on refroidit dans le congélateur, pour garder ensuite au frais, des aliments dans une glacière.

C’est un principe ancien, qui était mis en œuvre dans des ouvrages également appelés glacières, de profonds trous dans le sol, isolés, dans lesquels il était possible de stocker de la neige hivernale pour l’été ; pour l’anecdote, ces stocks de froid avaient un intérêt certain : ils servaient à stocker la glace nécessaire aux sorbets – on imagine qu’alors, les glaces étaient un met de luxe. Le projet de « ballon de glace » de Boreales se rapproche, à l’usage de l’industrie, de ces stocks de froid.

Énergie chimique

L’énergie chimique est la principale manière dont nous utilisons et stockons l’énergie aussi bien aujourd’hui que dans le passé. Considérons le bois, pour commencer. Ce bois a été produit par des plantes en consommant de l’énergie solaire (électromagnétique). Cette énergie est susceptible d’être libérée sous forme de chaleur par la combustion du bois,  qui n’est autre qu’une réaction chimique de transformation du carburant et de l’oxygène en dioxyde de carbone et en eau. Du point de vue de nos activités économiques, le bois est un stock d’énergie parmi les plus anciens qui soient.

Les carburants fossiles que nous consommons, pour nous déplacer avec nos véhicules, pour nous chauffer avec nos chaudières, ou pour tous les procédés industriels, sont des stocks d’énergie, au même titre que le bois. Un carburant fossile est donc, en quelque sorte, un stock d’énergie solaire, capté par les plantes depuis plusieurs millions d’années, et transformé en hydrocarbures par les processus biologiques et géologiques.

Ce n’est bien sûr pas un processus réversible en premier lieu, et donc ce n’est pas à proprement parler un stock d’énergie. En revanche, lorsque l’on envisage de fabriquer de l’hydrogène, du méthane ou du méthanol, à partir d’électricité renouvelable, d’eau et de dioxyde de carbone, on ne fait rien d’autre que créer un stock d’énergie, apte à être restituée plus tard, et relativement facilement manipulable et stockable – ce qui fait qu’on les nomme vecteurs énergétiques. Pour ce type de stockage, on fournit de l’énergie électrique, stockée sous forme chimique, et qui sera ensuite restituée sous forme de chaleur (énergie thermique) après la combustion. À ce propos, citons l’exemple de l’usine de fabrication de Carbon Recycling International en Islande.

À lire aussi Où se trouvent les stations de transfert d’énergie par pompage (STEP) en France ?

L’énergie chimique, c’est également un autre important secteur de la transition énergétique : il s’agit des batteries, ou plus précisément, des accumulateurs électrochimiques. Dans ces systèmes, on injecte de l’énergie électrique, laquelle est convertie en énergie chimique, puis est restituée sous la forme d’énergie électrique. Les concepts de batteries de ce type sont innombrables, celles qui ont le vent en poupe sont les batteries Lithium-ion. Ils peuvent avoir toutes les tailles, des batteries microscopiques aux batteries géantes, mais ne peuvent pas aujourd’hui stocker autant d’énergie qu’un barrage, par exemple.

Pour être tout à fait complet, il existe également d’autres formes de stockage chimique, dites thermochimiques. Ces derniers jouent sur des réactions chimiques qui produisent ou absorbent de la chaleur, de façon à stocker de l’énergie. Dans ces systèmes est utilisée par exemple la réaction chimique résultant de l’adsorption ou l’évaporation de l’eau depuis un sel, laquelle produit, ou absorbe de l’énergie. Certains l’ont peut-être constaté en diluant de la soude : cette opération exige des précautions particulières, et l’opération dégage de la chaleur.

Énergie électrique

L’énergie électrique, c’est-à-dire des charges électriques en mouvement, ne se stocke que très difficilement. Une simple bobine stocke, très temporairement, du courant électrique. Un concept envisagé aujourd’hui serait d’injecter de l’électricité dans une grande bobine en circuit fermé, et de la faire tourner indéfiniment. Toutefois, pour que l’énergie ne soit pas dissipée presque instantanément par effet joule (c’est-à-dire sous forme thermique), il est nécessaire de faire appel à un circuit composé d’un supraconducteur. Et pour que l’énergie nécessaire à refroidir le supraconducteur ne dépasse pas très vite l’énergie stockée, il est nécessaire que le matériau soit supraconducteur à température ambiante.

Un tel matériau, de nombreuses fois annoncé, jamais confirmé, est le Graal de la science des matériaux contemporaine. Son premier inventeur deviendra célèbre, sans l’ombre d’un doute. Nous ne sommes donc pas à l’abri qu’une découverte fracassante sorte un jour, subitement, dans les flux de nouvelles. Demain, par exemple. Ou dans plusieurs siècles…

À lire aussi Comment le stockage d’électricité de longue durée va rentabiliser les énergies renouvelables en Espagne

Énergie potentielle électrique

L’énergie potentielle électrique désigne simplement l’électricité statique. Un dispositif qui stocke des charges électriques s’appelle un condensateur, et c’est un système extrêmement répandu dans les circuits électriques.

En ce qui concerne le stockage de masse, ils sont toutefois beaucoup moins répandus : on parle de supercondensateurs. Un tel système ne peut pas stocker de grandes quantités d’énergie ; ils ont toutefois une très grande réactivité, et, de ce fait, peuvent délivrer une très forte puissance pendant un très court laps de temps.

Une telle caractéristique est particulièrement utile pour la stabilisation du réseau électrique vis-à-vis des variations brutales d’énergie, comme c’est le cas lorsque le mix intègre une plus grande part de source d’électricité renouvelables et intermittente. Citons à ce propos le système ViSync de la société Hybrid Energy Storage Solution, destiné à stabiliser le réseau des îles Canaries.

Énergie électromagnétique

L’énergie électromagnétique est plus connue sous le nom de rayonnement, ou de lumière, mais elle couvre une bien plus large réalité, sur toute la longueur d’onde du spectre électromagnétique, des infrarouges aux ultraviolets, en passant par les ondes radios. Nous avons vu que, sous un certain angle, les hydrocarbures sont un stock d’énergie solaire ; peut-on toutefois stocker la lumière directement, sous sa forme native ?

La réponse est oui. Il existe des composants appelés mémoires photoniques et destinés à piéger les photons. Ces systèmes sont destinés à alimenter des processeurs quantiques, et ils sont étudiés par exemple notamment par le projet BRiiGHT financé par l’Union européenne dans le cadre du programme Horizon 2020. La quantité d’énergie ainsi stockée reste infime ; ce n’est donc pas par cette manière que l’on va stocker la lumière solaire de l’été pour la réinjecter sur des panneaux photovoltaïques en plein hiver.

À lire aussi Les 3 plus grands sites de stockage d’électricité du monde

Énergie nucléaire

L’énergie nucléaire est celle libérée par les réactions nucléaires, c’est-à-dire celle qui concerne la transformation du noyau des atomes. Imaginer un moyen de stockage d’énergie nucléaire, suppose de pouvoir provoquer, de manière réversible et cyclique, des réactions de fission et de fusion nucléaire. Autant être direct : nous ne savons pas faire cela aujourd’hui.

Il existe en revanche une astuce, celui des isomères nucléaires. Un isomère nucléaire désigne un atome dont le noyau est à un état d’énergie supérieur à celui du noyau de l’atome à l’état de base. En 1998, une équipe de recherche de l’Université du Texas à Dallas a indiqué être parvenu à déclencher des transitions d’état d’énergie d’un isomère de l’hafnium, le 178m2Hf. C’est une perspective intéressante, car l’énergie libérée serait près de 100 000 fois plus importante que celle d’une réaction chimique. Cette découverte n’a toutefois pas été confirmée. Par ailleurs, l’énergie libérée est sous la forme d’un photon gamma (énergie électromagnétique), difficile à utiliser de manière pratique.

Au total, ce n’est donc pas demain que nous disposerons d’une batterie nucléaire rechargeable.

Masse-énergie

La notion de masse-énergie est à relier à la célèbre formule d’Albert-Einstein E=mc2, qui stipule que toute masse peut être convertie en énergie, et inversement. Cette conversion se produit lors de l’interaction de la matière et de l’antimatière. Dans une certaine perspective, il s’agit du grade ultime du stock d’énergie, car chaque kilogramme de matière et d’antimatière peut produire mille fois plus d’énergie que le même kilogramme d’uranium fissile, et plusieurs milliards de fois plus d’énergie qu’un kilogramme de carburant classique.

En revanche, ce n’est pas une option réaliste aujourd’hui. L’antimatière peut être produite dans un accélérateur à particules, mais avec un rendement déplorable (on ne stocke une énergie que de l’ordre du milliardième de l’énergie utilisée pour la produire) ; par ailleurs, le stockage de l’antimatière est une gageure. Ce n’est donc pas une option crédible à l’heure actuelle, sans que cela n’empêche de rêver qu’un jour, de grands accélérateurs de particules en orbite du Soleil, alimentés par de vastes panneaux photovoltaïques, alimentent en antimatière tous les besoins de l’Humanité.

L’article Quels sont les différents systèmes de stockage d’énergie ? est apparu en premier sur Révolution Énergétique.

Centrale nucléaire sur la Lune : la Chine, l’Inde et la Russie lancent le projet

Une centrale nucléaire sur la Lune, vraiment ? L’annonce de tels projets a émaillé l’actualité de l’exploration spatiale au cours des dernières décennies. Il n’en reste pas moins que le concept repose sur des besoins bien identifiés pour tout concept base lunaire. Voici quelles en sont les raisons.

C’est en 2021 que la Chine et la Russie ont annoncé leur projet conjoint de construction d’une base habitée sur la Lune. Ce projet, baptisé International Lunar Research Station (ILRS), envisage une mise en service entre 2035 et 2045. De son côté, l’Inde capitalise sur la réussite de son atterrisseur lunaire Chandrayaan-3, qui s’est posé sur la Lune le 23 août 2023. Dans la foulée de ce succès, en effet, le Premier ministre indien Modi a annoncé son ambition de poser des astronautes sur notre satellite à l’horizon 2040.

L’Inde joue un jeu diplomatique équilibré entre les grandes puissances, nouant des partenariats notamment avec les États-Unis et la Chine, en fonction des opportunités. Il n’était donc qu’une question de temps avant qu’une grande collaboration de l’Inde avec l’un ou l’autre bloc apparaisse dans le paysage mondial. C’est aujourd’hui chose faite : c’est par le biais de Rosatom, le constructeur et opérateur de centrales nucléaires russe, qu’est annoncé le partenariat entre la Russie, la Chine et l’Inde pour la construction d’une centrale nucléaire sur la Lune, dans le cadre du projet de base lunaire ILRS.

À lire aussi Ce géant français du nucléaire va sortir les États-Unis de sa dépendance à l’uranium russe

Le mix électrique sur la Lune est une affaire corsée

Les enjeux du mix électrique sur la Lune présentent certaines similitudes avec ceux du mix électrique sur Terre. Pour là-haut aussi, le débat fait rage : nucléaire ou photovoltaïque ? Les conditions d’ensoleillement de jour sont très favorables sur la Lune, car il n’y a pas là-haut d’atmosphère, et donc de perturbation d’ordre météorologique. En revanche, la nuit y dure 14 jours, c’est-à-dire la moitié du temps qu’il faut à la Lune pour faire le tour de la Terre – on parle en l’occurrence de rotation synchrone de sa rotation sur elle-même et de sa rotation autour de la Terre.

Dans le cas d’un approvisionnement solaire, cela rend plus ardu encore la continuité de l’approvisionnement électrique pendant les deux semaines de nuit, exigeant d’énormes systèmes de stockage de l’électricité, par exemple, par batterie ou par volants d’inertie. Pour le projet de base lunaire ILRS, qui réunit la Russie, la Chine, et l’Inde, il semble donc que ce soit l’énergie nucléaire qui ait été choisie. Peu de détails ont encore filtré sur sa conception ; nous savons pour le moment que la puissance de la centrale nucléaire serait de l’ordre de 500 kW, ce qui correspondrait donc à un très petit réacteur.

À lire aussi De l’électricité avec l’énergie de la Lune ? Cette usine en produit depuis 58 ans

L’article Centrale nucléaire sur la Lune : la Chine, l’Inde et la Russie lancent le projet est apparu en premier sur Révolution Énergétique.

Voici le plus grand complexe de bureaux en bois d’Europe, mais est-il vraiment bas-carbone ?

Un ensemble de bâtiments ultra-bas-carbone, qui vise à révolutionner la façon de vivre dans des bureaux, forcément, cela attire l’attention. Ainsi, le Campus Arboretum a été inauguré le 19 septembre 2024 par le président de la République, en bord de Seine, à Nanterre – La Défense.

La construction bas-carbone, voire ultra-bas-carbone, est un secteur de pointe et d’avant-garde. Elle vise à démontrer ce qu’il est possible de réaliser dans le domaine du bâtiment, en termes de matériaux et d’économies de ressources (énergie, eau), mais également vis-à-vis d’aspects plus liés à l’habitabilité des locaux et des quartiers. Ce type de réalisation est d’abord une affaire de prestige : en y installant leur siège social, les entreprises peuvent ainsi mettre en avant une cohérence entre les locaux où ils travaillent et leurs engagements environnementaux.

Le Campus Arboretum est un ensemble tertiaire de grande taille, le plus grand d’Europe à utiliser le bois comme principal matériau de construction. Jugez donc : 7 bâtiments, et une surface totale de 126 000 m2, divisible à partir de 1 200 m2. En plus des bureaux, le complexe propose un centre de conférences, de séminaires et de réunion (appelé la « Fabrique de la Connaissance ») ainsi qu’un centre de fitness et d’escalade (« l’Atelier des Sports »). C’est plus de 560 millions d’euros qui ont été investis dans ce projet. Ce dernier a été promu par WO2, un groupe spécialisé dans la promotion immobilière à très haute performance environnementale.

Le chantier d’Arboretum / Images : Lerlecq Associés (gauche) P. Raffin – WO2 (droite).

C’est un projet aux multiples facettes, notamment dans l’agencement de l’espace des bureaux, dont les étages se terminent par des terrasses surplombant un vaste parc de près de 9 ha. Le parc est doté d’un potager et d’un verger de près de 3 200 m2, dont une partie de la production est dédiée à fournir les sept restaurants du Campus. C’est une réflexion d’ensemble qui donc a présidé aux choix de conception. En ce qui concerne nos sujets de prédilection, qu’est-ce qui fait la particularité du Campus Arboretum ?

À lire aussi Cet immeuble moderne n’a ni chauffage, ni climatisation, ni ventilation mécanique

Une conception bioclimatique orientée par la géothermie

Les nouveaux bâtiments ont été construits en bois, tandis que les bâtiments anciens ont été conservés, et rénovés (il s’agit des locaux de l’ancienne papeterie de la Seine de Nanterre). Ce sont près de 32 400 m3 de bois massif CLT (Cross laminated timber, en français lamellé-croisé) qui ont été utilisés. Lors de la construction, une grande quantité de déblais (160 000 m3) ont été utilisés sur place, sans transport, donc. En outre, ce sont près de 20 000 m3 d’eau de pluie qui seront récupérées par an, selon les promesses du promoteur.

La conception bioclimatique n’est pas austère : la hauteur sous plafond est de 3,1 m. La production d’énergie renouvelable est réalisée sur site par la géothermie, par l’intermédiaire de 10 puits implantés dans la nappe phréatique (à environ 15 °C), couplés à des pompes à chaleur, dont le coefficient de performance (COP), dans cette configuration, se situe entre 5 et 7. Ce système, qui permet le réemploi des énergies renouvelables dans la nappe, assurera 80 % des besoins de chaud et de froid. Le complément est assuré par le réseau électrique, peu carboné en France.

Le complexe Arboretum / Images : WO2

Des émissions deux fois inférieures à un immeuble conventionnel en béton

L’ensemble de ces caractéristiques permet au projet de revendiquer plusieurs labels importants. Le complexe est ainsi le plus grand ensemble tertiaire labellisé au niveau « excellent » du label BBCA (Bâtiment Bas Carbone), ainsi que le niveau E2C2 du label E+C-, qui n’est pas le niveau le plus élevé. Le projet est très économe en énergie : il revendique une consommation d’énergie finale de 61 kWh/m2/an, ce qui représente près de la moitié du seuil du décret tertiaire 2050 (à 110,5 kWh/m2/an). Comparativement aux autres bâtiments de La Défense, cela représente une division de l’ordre de 3 de la consommation d’énergie. Le site du projet indique une économie sur la facture d’énergie comprise entre 25 et 29 €/m2/an.

En ce qui concerne le dioxyde de carbone, la méthode d’analyse du cycle de vie (ACV) conduit à des émissions de 673 kg-CO2eq/m2 de surface de plancher. C’est une division par deux par rapport à un bâtiment en béton conventionnel qui aurait été conçu entre 2019 et 2021, soit 1 260 kg-CO2eq/m2. Car, si les ossatures sont en bois, le noyau et les fondations de chaque bâtiment ont bien été construits en béton. Le recours au bois a permis de réduire l’utilisation du béton, un matériau dont la fabrication est une source majeure de gaz à effet de serre.

À lire aussi Voici l’éolienne en bois la plus haute du monde

L’article Voici le plus grand complexe de bureaux en bois d’Europe, mais est-il vraiment bas-carbone ? est apparu en premier sur Révolution Énergétique.

Pourquoi les batteries LFP ont une capacité réelle très inférieure à celle annoncée ?

Saviez-vous pourquoi les batteries Lithium-Fer-Phosphate (LFP) avaient une capacité si inférieure à leur valeur théorique ? Nous non plus, et la science non plus, en dépit d’efforts de recherche considérables. Une équipe de l’université technologique de Graz, en Autriche, aurait trouvé la réponse à cette énigme. Préparez votre voyage au cœur de la matière.

On ne présente plus les batteries LFP, et leur rôle de plus en plus important dans la transition énergétique : excellente durée de vie, sécurité, besoin moindre en matériaux coûteux et stratégiques, elles se sont taillé une place de choix dans le stockage stationnaire et progressivement dans les véhicules électriques. Leur capacité est toutefois moindre que les autres batteries lithium-ion, et, en particulier, moindre que leur capacité théorique. Et la raison de cette performance en deçà de ce qui était attendu ne lassait pas de défier les tentatives d’explication scientifiques.

Ce mystère a sans doute été résolu par une étude d’une équipe de chercheurs de l’Université technologique de Graz, menée par le chercheur Nikola Šimić. Les résultats de leurs travaux ont été publiés très récemment dans la revue Advanced Energy Material (l’article est en accès libre).

À lire aussi Guerre des batteries : les prix vont-ils poursuivre leur chute ?

Le mystère de la capacité plus faible que prévu des batteries LFP

Rappelons les données du problème : d’après Šimić et son équipe, la capacité théorique d’une batterie LFP peut être calculée à 170 mAh/g. Cette unité, le « miliampère-heure par gramme de batterie » n’est pas d’un usage courant, mais nous allons la décrypter. L’ampère-heure représente la charge électrique d’une batterie à une tension électrique spécifique. Si nous considérons la tension nominale d’une batterie LFP est de l’ordre 3,2 V, cette capacité théorique peut se convertir en une valeur de 540 Wh par kilogramme de batterie. Les auteurs indiquent toutefois que la capacité effective est plus faible de 10 à 25 %.

Nous pouvons noter au passage que ces valeurs de capacité par unité de masse sont élevées par rapport aux valeurs plus couramment connues, qui sont plutôt de l’ordre de 150 Wh/kg. Cette différence est due au fait que les chercheurs parlent dans leur article de la capacité de l’électrode elle-même, et non pas de la batterie complète, qui comprend bien sûr de nombreux autres matériaux, eux aussi pesants.

Les batteries LFP, comme les autres batteries lithium-ion, reposent sur le principe du transfert des atomes de lithium entre une électrode positive et une électrode négative (plus précisément, il s’agit du transfert d’ion lithium Li+). Au cours de la décharge, les ions lithium quittent le matériau de l’électrode négative (on parle de « délithiation »), et viennent s’intégrer dans la microstructure du matériau de l’électrode positive (« lithiation ») ; au cours de la charge, le mouvement s’inverse.

À lire aussi Une batterie explose et détruit une maison

L’explication de l’équipe autrichienne

Pour résoudre l’énigme, les chercheurs ont utilisé un microscope électronique à transmission (TEM), pour pratiquer une technique dite de diffraction appelée SAED (pour Selected area electron diffraction, que l’on pourrait traduire en français par diffraction des électrons dans une zone sélectionnée). Cette technique leur a permis d’établir finement la composition et la structure cristalline du matériau de l’électrode positive (en phosphate de fer-lithium), avec une résolution spatiale de l’ordre du nanomètre, c’est-à-dire quelques atomes.

Cette analyse a permis d’observer le mouvement des ions lithium pendant les phases de lithiation/délithiation, et d’en tirer de grands enseignements. Le plus significatif d’entre eux, notamment en ce qui concerne la capacité de la batterie, réside dans le fait qu’une électrode conserve encore un peu de lithium, même après délithiation. Par ailleurs, ce lithium résiduel est distribué de manière hétérogène dans l’électrode, c’est-à-dire qu’il est continu dans des zones un peu plus riches en lithium, environnées de zones complètement sans lithium.

Ces études vont permettre de mieux comprendre les processus de lithiation/délithiation, et ainsi d’espérer augmenter la capacité des batteries LFP. Les auteurs indiquent que la piste identifiée peut permettre d’améliorer la compréhension d’autres types de batteries également.

L’article Pourquoi les batteries LFP ont une capacité réelle très inférieure à celle annoncée ? est apparu en premier sur Révolution Énergétique.

❌