Vue lecture

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.

Upcoming AMD Ryzen AI 9 HX 170 Processor Leaked By ASUS?

In what appears to be a mistake or a jump of the gun by ASUS, they have seemingly published a list of specifications for one of its key notebooks that all but allude to the next generation of AMD's mobile processors. While we saw AMD toy with a new nomenclature for their Phoenix silicon (Ryzen 7040 series), it seems as though AMD is once again changing things around where their naming scheme for processors is concerned.

The ASUS listing, which has now since been deleted, but as of writing is still available through Google's cache, highlights a model that is already in existence, the VivoBook S 16 OLED (M5606), but is listed with an unknown AMD Ryzen AI 9 HX 170 processor. Which, based on its specificiations, is certainly not part of the current Hawk Point (Phoenix/Phoenix 2) platform.


The cache on Google shows the ASUS Vivobook S 16 OLED with a Ryzen AI 9 HX 170 Processor

While it does happen in this industry occasionally, what looks like an accidental leak by ASUS on one of their product pages has unearthed an unknown processor from AMD. This first came to our attention via a post on Twitter by user @harukaze5719. While we don't speculate on rumors, we confirmed this ourselves by digging through Google's cache. Sure enough, as the image above from Google highlights, it lists a newly unannounced model of Ryzen mobile processor. Under the listing via the product compare section for the ASUS Vivobook S 16 OLED (M5606) notebook, it is listed with the AMD Ryzen AI 9 HX 170, which appears to be one of AMD's upcoming Zen 5-based mobile chips codenamed Strix Point.

So with the seemingly new nomenclature that AMD has gone with, it has a clear focus on AI, or rather Ryzen AI, by including it in the name. The Ryzen AI 9 HX 170 looks set to be a 12C/24T Zen 5 mobile variant, with their Ryzen AI NPU or similar integrated within the chip. Given that Microsoft has defined that only processors with an NPU with 45 TOPS of performance or over constitute being considered an 'AI PC', it's likely the Xilinx (now AMD Xilinx) based NPU will meet these requirements as the listing states the chip has up to 77 TOPS of AI performance available. The HX series is strikingly similar to AMD's (and Intel's) previous HX naming series for their desktop replacement SKUs for laptops, so assuming any of the details of ASUS's error are correct, then this is presumably a very high-end, high-TDP part.


AMD Laptop Roadmap from Zen 2 in 2019 to Zen 5 on track for release in 2024

We've known for some time that AMD plans to release AMD's Zen 5-based Strix Point line-up sometime in 2024. Given the timing of Computex 2024, which is just over four weeks away, we still don't quite have the full picture of Zen 5's performance and its architectural shift over Zen 4. AMD CEO Dr. Lisa Su also confirmed that Zen 5 will come with enhanced RDNA graphics within the Strix Point SoC by stating "Strix combines our next-gen Zen 5 core with enhanced RDNA graphics and an updated Ryzen AI engine to significantly increase the performance, energy efficiency, and AI capabilities of PCs,"

While it's entirely possible as we lead up to Computex 2024 that AMD is prepared to announce more details about Zen 5, nothing is confirmed. We do know that the CEO of AMD, Dr. Lisa Su is scheduled to deliver the opening keynote of the show, Dr. Lisa Su unveiled their Zen 4 microarchitecture at Computex 2022 during AMD's keynote and even unveiled their 3D V-Cache stacking, which we know today as the Ryzen X3D CPUs back at Computex 2021.

With that in mind, AMD and Dr. Lisa Su love to announce new products and architectures at Computex, so we just have to wait until the beginning of next month. How AMD denotes the nomenclature for the upcoming Zen 5 mobile and desktop processors remains to be seen, but hopefully, all will be revealed soon. Regarding the ASUS Vivobook S 16 OLED (M5606), we currently don't know any of the other specifications at this time. Still, we expect them to be available once AMD has updated us with information on Zen 5 and Strix Point.

Apple Announces M4 SoC: Latest and Greatest Starts on 2024 iPad Pro

Setting things up for what is certainly to be an exciting next few months in the world of CPUs and SoCs, Apple this morning has announced their next-generation M-series chip, the M4. Introduced just over six months after the M3 and the associated 2023 Apple MacBook family, the M4 is going to start its life on a very different track, launching alongside Apple’s newest iPad Pro tablets. With their newest chip, Apple is promising class-leading performance and power efficiency once again, with a particular focus on machine learning/AI performance.

The launch of the M4 comes as Apple’s compute product lines have become a bit bifurcated. On the Mac side of matters, all of the current-generation MacBooks are based on the M3 family of chips. On the other hand, the M3 never came to the iPad family – and seemingly never will. Instead, the most recent iPad Pro, launched in 2022, was an M2-based device, and the newly-launched iPad Air for the mid-range market is also using the M2. As a result, the M3 and M4 exist in their own little worlds, at least for the moment.

Given the rapid turn-around between the M3 and M4, we’ve not come out of Apple’s latest announcement expecting a ton of changes from one generation to the next. And indeed, details on the new M4 chip are somewhat limited out of the gate, especially as Apple publishes fewer details on the hardware in its iPads in general. Coupled with that is a focus on comparing like-for-like hardware – in this case, M4 iPads to M2 iPads – so information is thinner than I’d like to have. None the less, here’s the AnandTech rundown on what’s new with Apple’s latest M-series SoC.

Apple M-Series (Vanilla) SoCs
SoC M4 M3 M2
CPU Performance 4-core 4-core 4-core (Avalanche)
16MB Shared L2
CPU Efficiency 6-core 4-core 4-core (Blizzard)
4MB Shared L2
GPU 10-Core
Same Architecture as M3
10-Core
New Architecture - Mesh Shaders & Ray Tracing
10-Core
3.6 TFLOPS
Display Controller 2 Displays? 2 Displays 2 Displays
Neural Engine 16-Core
38 TOPS (INT8?)
16-Core
18 TOPS
16-Core
15.8 TOPS
Memory
Controller
LPDDR5X-7700
8x 16-bit CH
120GB/sec Total Bandwidth (Unified)
LPDDR5-6400
8x 16-bit CH
100GB/sec Total Bandwidth (Unified)
LPDDR5-6400
8x 16-bit CH
100GB/sec Total Bandwidth (Unified)
Max Memory Capacity 24GB? 24GB 24GB
Encode/
Decode
8K
H.264, H.265, ProRes, ProRes RAW, AV1 (Decode)
8K
H.264, H.265, ProRes, ProRes RAW, AV1 (Decode)
8K
H.264, H.265, ProRes, ProRes RAW
USB USB4/Thunderbolt 3
? Ports
USB4/Thunderbolt 3
2x Ports
USB4/Thunderbolt 3
2x Ports
Transistors 28 Billion 25 Billion 20 Billion
Mfc. Process TSMC N3E TSMC N3B TSMC N5P

At a high level, the M4 features some kind of new CPU complex (more on that in a second), along with a GPU that seems to be largely lifted from the M3 – which itself was a new GPU architecture. Of particular focus by Apple is the neural engine (NPU), which is still a 16-core design, but now offers 38 TOPS of performance. And memory bandwidth has been increased by 20% as well, helping to keep the more powerful chip fed.

One of the few things we can infer with a high degree of certainty is the manufacturing process being used here. Apple’s description of a “second generation 3nm process” lines up perfectly in timing with TSMC’s second-generation 3nm process, N3E. The enhanced version of their 3nm process node is a bit of a sidegrade to the N3B process used by the M3 series of chips; N3E is not quite as dense as N3B, but according to TSMC it offers slightly better performance and power characteristics. The difference is close enough that architecture plays a much bigger role, but in the race for energy efficiency, Apple will take any edge they can get.

Apple’s position as TSMC’s launch-partner for new process nodes has been well-established over the years, and Apple appears to be the first company out the door launching chips on the N3E process. They will not be the last, however, as virtually all of TSMC’s high-performance customers are expected to adopt N3E over the next year. So Apple’s immediate chip manufacturing advantage, as usual, will only be temporary.

Apple’s early-leader status likely also plays into why we’re seeing the M4 now for iPads – a relatively low volume device at Apple – and not the MacBook lineup. At some point, TSMC’s N3E production capacity will catch up, and then-some. I won’t hazard a guess as to what Apple has planned for that lineup at that point, as I can’t really see Apple discontinuing M3 chips so quickly, but it also leaves them in an awkward spot having to sell M3 Macs when the M4 exists.

No die sizes have been quoted for the new chip (or die shots posted), but at 28 billion transistors in total, it’s only a marginally larger transistor count than the M3, indicating that Apple hasn’t thrown an excessive amount of new hardware into the chip. (ed: does anyone remember when 3B transistors was a big deal?)

M4 CPU Architecture: Improved ML Acceleration

Starting on the CPU side of things, we’re facing something of an enigma with Apple’s M4 CPU core design. The combination of Apple’s tight-lipped nature and lack of performance comparisons to the M3 means that we haven’t been provided much information on how the CPU designs compare. So if M4 represents a watershed moment for Apple’s CPU designs – a new Monsoon/A11 – or a minor update akin to the Everest CPU cores in A17, remains to be seen. Certainly we hope for the latter, but absent further details, we’ll work with what we do know.

Apple’s brief keynote presentation on the SoC noted that both the performance and efficiency cores implement improved branch predication, and in the case of performance cores, a wider decode and execution engine. However these are the same broad claims that Apple made for the M3, so this is not on its own indicative of a new CPU architecture.

What is unique to Apple’s M4 CPU claims however are “next-generation ML accelerators” for both CPU core types. This goes hand-in-hand with Apple’s broader focus on ML/AI performance in the M4, though the company isn’t detailing on just what these accelerators entail. With the NPU to do all of the heavy lifting, the purpose of AI enhancements on the CPU cores is less about total throughput/performance and more about processing light inference workloads mixed inside more general-purpose workloads without having to spend the time and resources firing up the dedicated NPU.

A grounded guess here would be that Apple has updated their poorly-documented AMX matrix units, which have been a part of the M series of SoCs since the beginning. However recent AMX versions already support common ML number formats like FP16, BF16, and INT8, so if Apple has made changes here, it’s not something simple and straightforward such as adding (more) common formats. At the same time if it is AMX, it’s a bit surprising to see Apple mention it at all, since they are otherwise so secretive about the units.

The other reasonable alternative would be that Apple has made some changes to their SIMD units within their CPUs to add common ML number formats, as these units are more directly accessible by developers. But at the same time, Apple has been pushing developers to use higher-level frameworks to begin with (which is how AMX is accessed), so this could really go either way.

In any case, whatever the CPU cores are that underpin M4, there is one thing that is certain: there are more of them. The full M4 configuration is 4 performance cores paired with 6 efficiency cores, 2 more efficiency cores than found on the M3. Cut-down iPad models get a 3P+6E configuration, while the higher-tier configurations get the full 4P+6E experience – so the performance impact there will likely be tangible.

Everything else held equal, the addition of two more efficiency cores shouldn’t massively improve on CPU performance over the M3’s 4P+4E configuration. But then Apple’s efficiency cores should not be underestimated, as even Apple’s efficiency cores are relatively powerful thanks to their use of out-of-order execution. Especially when fixed workloads can be held on the efficiency cores and not promoted to the performance cores, there’s a lot of room for energy efficiency gains.

Otherwise, Apple hasn’t published any detail performance graphs for the new SoC/CPU cores, so there’s little in the way of hard numbers to talk about. But the company is claiming that the M4 delivers 50% faster CPU performance than the M2. This presumably is for a multi-threaded workload that can leverage the M4’s CPU core count advantage. Alternatively, in their keynote Apple is also claiming that they can deliver M2 performance at half the power, which as a combination of process node improvements, architectural improvements, and CPU core count increases, seems like a reasonable claim.

As always, however, we’ll have to see how independent benechmarks pan out.

M4 GPU Architecture: Ray Tracing & Dynamic Caching Return

Compared to the CPU situation on the M4, the GPU situation is much more straightforward. Having just recently introduced a new GPU architecture in the M3 – a core type that Apple doesn’t iterate on as often as the CPU – Apple has all but confirmed that the GPU in the M4 is the same architecture that was found in the M3.

With 10 GPU cores, at a high level the configuration is otherwise identical to what was found on the M3. Whether that means the various blocks and caches are truly identical to the M3 remains to be seen, but Apple isn’t making any claims about the M4’s GPU performance that could be in any way interpreted as it being superior to the M3’s GPU. Indeed, the smaller form factor of the iPad and more limited cooling capabilities means that the GPU is going to be thermally constrained under any sustained workload to begin with, especially compared to what the M3 can do in an actively-cooled device like the 14-Inch MacBook Pro.

At any rate, this means the M4 comes with all of the major new architectural features introduced with the M3’s GPU: ray tracing, mesh shading, and dynamic caching. Ray tracing needs little introduction at this point, while mesh shading is a significant, next-generation means of geometry processing. Meanwhile, dynamic caching is Apple’s term for their refined memory allocation technique on M-series chips, which avoids over-allocating memory to the GPU from Apple’s otherwise unified memory pool.

GPU rendering aside, the M4 also gets the M3’s updated media engine block, which coming from the M2 is a relatively big deal for iPad uses. Most notably, the M3/M4’s media engine block added support for AV1 video decoding, the next-generation open video codec. And while Apple is more than happy to pay royalties on HEVC/H.265 to ensure it’s available within their ecosystem, the royalty-free AV1 codec is expected to take on a lot of significance and use in the coming years, leaving the iPad Pro in a better position to use the newest codec (or, at least, not have to inefficiently decode AV1 in software).

What is new to the M4 on the display side of matters, however, is a new display engine. The block responsible for compositing images and driving the attached displays on a device, Apple never gives this block a particularly large amount of attention, but when they do make updates to it, it normally comes with some immediate feature improvements.

The key change here seems to be enabling Apple’s new sandwiched “tandem” OLED panel configuration, which is premiering in the iPad Pro. The iPad’s Ultra Retina XDR display places two OLED panels directly on top of each other in order allow for a display that can cumulatively hit Apple’s brightness target of 1600 nits – something that a single one of their OLED panels is apparently incapable of doing. This in turn requires a display controller that knows how to manipulate the panels, not just driving a mirrored set of displays, but accounting for the performance losses that would stem from having one panel below another.

And while not immediately relevant to the iPad Pro, it will be interesting to see if Apple used this opportunity to increase the total number of displays the M4 can drive, as vanilla M-series SoCs have normally been limited to 2 displays, much to the consternation of MacBook users. The fact that the M4 can drive the tandem OLED panels and an external 6K display on top of that is promising, but we’ll see how this translates to the Mac ecosystem if and when the M4 lands in a Mac.

M4 NPU Architecture: Something New, Something Faster

Arguably Apple’s biggest focus with the M4 SoC is the company’s NPU, otherwise known as their neural engine. The company has been shipping a 16-core design since the M1 (and smaller designs on the A-series chips for years before that), each generation delivering a modest increase in performance. But with the M4 generation, Apple says they are delivering a much bigger jump in performance.

Still a 16-core design, the M4 NPU is rated for 38 TOPS, just over twice that of the 18 TOPS neural engine in the M3. And coincidentally, only a few TOPS more than the neural engine in the A17. So as a baseline claim, Apple is pitching the M4 NPU as being significantly more powerful than what’s come in the M3, never mind the M2 that powers previous iPads – or going even farther back, 60x faster than the A11’s NPU.

Unfortunately, the devil is (once again) in the details here as Apple isn’t listing the all-important precision information – whether this figure is based on INT16, INT8, or even INT4 precision. As the precision de jure for ML inference right now, INT8 is the most likely option, especially as this is what Apple quoted for the A17 last year. But freely mixing precisions, or even just not disclosing them, is headache-inducing to say the least. And it makes like-for-like specification comparisons difficult.

In any case, even if most of this performance improvement comes from INT8 support versus INT16/FP16 support, the M4 NPU is slated to deliver significant performance improvements to AI performance, similar to what’s already happened with the A17. And as Apple was one of the first chip vendors to ship a consumer SoC with what we now recognize as an NPU, the company isn’t afraid to beat its chest a bit on the matter, especially comparing it to what is going on in the PC realm. Especially as Apple’s offering is a complete hardware/software ecosystem, the company has the advantage of being able mold their software around using their own NPU, rather than waiting for the killer app to be invented for it.

M4 Memory: Adopting Faster LPDDR5X

Last, but certainly not least, the M4 SoC is also getting a notable improvement in its memory capabilities. Given the memory bandwidth figures Apple is quoting for the M4 – 120GB/second – all signs point to them finally adopting LPDDR5X for their new SoC.

The mid-generation update to the LPDDR5 standard, LPDDR5X allows for higher memory clockspeeds than LPDDR5, which topped out at 6400 MT/second. While LPDDR5X is available at speeds up to 8533 MT/second right now (and faster speeds to come), based on Apple’s 120GB/second figure for the M4, this puts the memory clockspeed at roughly LPDDR5X-7700.

Since the M4 is going into an iPad first, for the moment we don’t have proper idea of its maximum memory capacity. The M3 could house up to 24GB of memory, and while it’s highly unlikely Apple has regressed here, there’s also no sign whether they’ve been able to increase it to 32GB, either. In the meantime, the iPads Pro will all either come with 8GB or 16GB of RAM, depending on the specific model.

2024 M4 iPad Pros: Coming Next Week

Wrapping things up, in traditional Apple fashion, prospective tablet buyers will get the chance to see the M4 in action sooner than later. The company has already opened up pre-orders for the new iPad Pros, with the first deliveries slated to take place next week, on May 15th.

Apple is offering two sizes of the 2024 iPad Pro: 11 inches and 13 inches. Screen size aside, both sizes are getting access to the same M4 and memory configurations. 256GB/512GB models get a 3P+6E core CPU configuration and 8GB of RAM, meanwhile the 1TB and 2TB models get a fully-enabled M4 SoC with a 4P+6E CPU configuration and 16GB of RAM. The GPU configuration on both models is identical, with 10 GPU cores.

Pricing starts at $999 for the 256GB 11-inch model and $1299 for the 256GB 13-inch model. Meanwhile a max-configuration 13-inch model with 2TB of storage, Apple’s nano-texture matte display, and cellular capabilities will set buyers back a cool $2599.

AMD Zen 5 Status Report: EPYC "Turin" Is Sampling, Silicon Looking Great

As part of AMD's Q1'2024 earnings announcement this week, the company is offering a brief status update on some of their future products set to launch later this year. Most important among these is an update on their Zen 5 CPU architecture, which is expected to launch for both client and server products later this year.

Highlighting their progress so far, AMD is confirming that EPYC "Turin" processors have begun sampling, and that these early runs of AMD's next-gen datacenter chips are meeting the company's expectations.

"Looking ahead, we are very excited about our next-gen Turin family of EPYC processors featuring our Zen 5 core," said Lisa Su, chief executive officer of AMD, at the conference call with analysts and investors (via SeekingAlpha). "We are widely sampling Turin, and the silicon is looking great. In the cloud, the significant performance and efficiency increases of Turin position us well to capture an even larger share of both first and third-party workloads."

Overall, it looks like AMD is on-track to solidify its position, and perhaps even increase its datacenter market share with its EPYC Turin processors. According to AMD, the company's server partners are developing a 30% larger number of designs for Turin than they did Genoa. This underscores how AMD's partners are preparing for even more market share growth on the back of AMD's ongoing success, not to mention the improved performance and power efficiency that the Zen 5 architecture should offer.

"In addition, there are 30% more Turin platforms in development from our server partners, compared to 4th Generation EPYC platforms, increasing our enterprise and with new solutions optimized for additional workloads," Su said. "Turin remains on track to launch later this year."

AMD's EPYC 'Turin' processors will be drop-in compatible with existing SP5 platforms (i.e., will come in an LGA 6096 package), which will facilitate its faster ramp and adoption of the platform both by cloud giants and server makers. In addition, AMD's next-generation EPYC CPUs are expected to feature more than 96 cores and a more versatile memory subsystem.

In Light of Stability Concerns, Intel Issues Request to Motherboards Vendors to Actually Follow Stock Power Settings

Across the internet, from online forums such as Reddit to various other tech media outlets, there's a lot of furor around reports of Intel's top-end 14th and 13th Gen K series of processors running into stability issues. As Intel's flagship chips, these parts come aggressively clocked in order to maximize performance through various implementations of boost and turbo, leaving them running close to their limits out of the box. But with high-end motherboards further goosing these chips to wring even more performance out of them, it would seem that the Intel desktop ecosystem has finally reached a tipping point where all of these efforts to boost performance have pushed these flagship chips to unstable conditions. To that end, Intel has released new gudiance to its consumer motherboard partners, strongly encouraging them to actually implment Intel's stock power settings, and to use those baseline settings as their out-of-the-box default.

While the underlying conditions are nothing new – we've published stories time and time again about motherboard features such as multi-core enhancement (MCE) and raised power consumption limits that seek to maximize how hard and how long systems are able to turbo boost – the issue has finally come to a head in the last couple of months thanks to accumulating reports of system instability with Intel's 13900K and 14900K processors. These instability problems are eventually solved by either tamping down on these motherboard performance-boosting features – bringing the chips back down to something closer to Intel's official operating parameters – or downclocking the chips entirely.

Intel first began publicly investigating the matter on the 27th of February, when Intel's Communications Manager, Thomas Hannaford, posted a thread on Intel's Community Product Support Forms titled "Regarding Reports of 13th/14th Gen Unlocked Desktop Users Experiencing Stability Issues". In this thread, Thomas Hannaford said, "Intel is aware of reports regarding Intel Core 13th and 14th Gen unlocked desktop processors experiencing issues with certain workloads. We're engaged with our partners and are conducting analysis of the reported issues. If you are experiencing these issues, please reach out to Intel Customer Support for further assistance in the interim."

Since that post went up, additional reports have been circulating about instability issues across various online forums and message boards. The underlying culprit has been theorized to be motherboards implementing an array of strategies to improve chip performance, including aggressive multi-core enhancement settings, "unlimited" PL2 turbo, and reduced load line calibration settings. At no point do any of these settings overclock a CPU and push it to a higher clockspeed than it's validated for, but these settings do everything possible to keep a chip at the highest clockspeed possible at all times – and in the process seem to have gone a step too far.


From "Why Intel Processors Draw More Power Than Expected: TDP and Turbo Explained"

We wrote a piece initially covering multi-core enhancement in 2012, detailing how motherboard manufacturers try to stay competitive with each other and leverage any headroom within the silicon to output the highest performance levels. And more recently, we've talked about how desktop systems with Intel chips are now regularly exceeding their rated TDPs – sometimes by extreme amounts – as motherboard vendors continue to push them to run as hard as possible for the best performance.

But things have changed since 2012. At the time, this wasn't so much of an issue, as overclocking was actually very favorable to increasing the performance of processors. But in 2024 with chips such as the Intel Core i9-14900K, we have CPUs shipping with a maximum turbo clock speed of 6.0 GHz and a peak power consumption of over 400 Watts, figures that were only a pipe dream a decade ago.

Jumping to the present time, over the weekend Intel released a statement about the matter to its partners, outlining their investigation so far and their suggestions/requests to their partners. That statement was quickly leaked to the press, with Igorslab.de and others breaking the news. Since then, we've been able to confirm through official sources that this is a real and accurate statement from Intel.

This statement reads as follows:

Intel® has observed that this issue may be related to out of specification operating conditions resulting in sustained high voltage and frequency during periods of elevated heat.

Analysis of affected processors shows some parts experience shifts in minimum operating voltages which may be related to operation outside of Intel® specified operating conditions.

While the root cause has not yet been identified, Intel® has observed the majority of reports of this issue are from users with unlocked/overclock capable motherboards.

Intel® has observed 600/700 Series chipset boards often set BIOS defaults to disable thermal and power delivery safeguards designed to limit processor exposure to sustained periods of high voltage and frequency, for example:

– Disabling Current Excursion Protection (CEP)
– Enabling the IccMax Unlimited bit
– Disabling Thermal Velocity Boost (TVB) and/or Enhanced Thermal Velocity Boost (eTVB)
– Additional settings which may increase the risk of system instability:
– Disabling C-states
– Using Windows Ultimate Performance mode
– Increasing PL1 and PL2 beyond Intel® recommended limits

Intel® requests system and motherboard manufacturers to provide end users with a default BIOS profile that matches Intel® recommended settings.

Intel® strongly recommends customer's default BIOS settings should ensure operation within Intel's recommended settings.

In addition, Intel® strongly recommends motherboard manufacturers to implement warnings for end users alerting them to any unlocked or overclocking feature usage.

Intel® is continuing to actively investigate this issue to determine the root cause and will provide additional updates as relevant information becomes available.

Intel® will be publishing a public statement regarding issue status and Intel® recommended BIOS setting recommendations targeted for May 2024.

One subtle undertone in this statement is that everything seems to revolve around motherboards, specifically their default settings. Looking to clarify matters, Intel has told me today that they aren't blaming motherboard vendors in the above statement to partners and OEMs. However, having had experience with multiple Z790 motherboards with Intel's Core i9-14900K, we know each vendor has a different idea of what the word 'default' means – and that none of them involve strictly sticking to Intel's own suggested values. These profiles within the firmware unlock power constraints to a very high level and go above and beyond what Intel recommends. One example is ICCMAX, which Intel recommends at 400A or below, whereas multiple Z790 motherboards will greatly exceed this value out of the box.

Impressing buyers and outperforming the competitors has become integral to every motherboard manufacturer's strategy, thanks to the highly competitive and commoditized nature of the motherboard market. As a result, the user experience is sometimes relegated to a low-priority goal. And while this focus on performance and overclocking features plays well in reviews and to overclockers and tinkerers looking to push their CPU to its very limit, as we are now seeing, it seems to have come at the cost of out-of-the-box stability, with overly-aggressive settings leading to systems being unstable even at default settings.

Especially concerning here is what all of this means for a CPU's VCore voltage, which is another aspect of system performance that motherboard vendors have complete control over. With the need to quickly modulate the VCore voltage to keep up with the load on the processor – to keep it high enough for stability, but not allow it to spike so high as to risk damage – it's a careful balancing act for motherboard vendors even when they're not trying to squeeze out every last bit of performance from a CPU. And when they are trying to squeeze out every last bit, then VCore is something to minimize in order to improve how long and hard a CPU can turbo, pushing a chip further towards potential instability.

Pivoting to some real-world data highlighting these potential issues, when we reviewed the Intel Core i9-14900K, Intel's flagship Raptor Lake Refresh (RPL-R) processor, we tested with the default settings on both of our Z790 motherboards. From the above data, we can see the MSI MEG Z790 Ace Max was drawing up to 415 W when using Linx to place a very heavy workload on the chip. We also ran the same chip and workload on ASRock's Z790 Taichi Carrara to provide additional data points, where we found that it's power consumption maxed out at 375 W, around 10% lower than the MSI board.

In both cases, this is much higher than Intel's official PL2 limit for the Intel Core i9-14900K, which says that the chip should top out at 253 W for moderate periods of load. But, as we've seen time and time again, the official TDP ratings from Intel do not mean much to high-end motherboards, which almost universally default to higher settings. Motherboard vendors want to be competitive, and as such, higher default power settings allow vendors to claim that they deliver better performance than their rivals.

As further evidence of this, check out some of our recent motherboard reviews. I have assembled a small list of links to those reviews, where we've seen excessive CPU voltage or power consumption (or more often, both) when using the default settings on each motherboard, in each of the below reviews we see much higher power levels than Intel's official TDP values, which over the last several years we've come to expect. Still, some can be too high, especially with an already close-to-the-limit Core i9-14900K.

We have been communicating with Intel for most of the day to get official answers to what's happening. To that end, we have received an official statement from Intel, which reads as follows:

The recently publicized communications between Intel and its motherboard partners regarding motherboard settings and Intel Core 13th & 14th Gen K-SKU processors is intended to provide guidance on Intel recommended default settings. We are continuing to investigate with our partners the recent user reports of instability in certain workloads on these processors.

This BIOS default settings guidance is meant to improve stability for currently installed processors while Intel continues investigating root cause, not ascribe blame to Intel's partners:

Intel Raptor Lake (13th)/Raptor Lake Refresh (14th) Gen K Series SKU
Official Recommendations
Parameter/Feature
(In BIOS/Software Settings)
Value/Setting
Current Excursion Protection (CEP) Enable
Enhanced Thermal Velocity Boost (eTVB) Enable
Thermal Velocity Boost (TVB) Enable
TVB Voltage Optimizations Enable
ICCMAX Unlimited Bit Disable
TjMAX Offset 0
C-states Enable
ICCMAX Varies, Never >400A*
ICCMAX_App Varies*
Power Limits (PL's) Varies*

* Please see the 13th Generation Intel® Core™ and Intel® Core™ 14th Generation Processors datasheet for more information

Intel continues to work with its partners to develop appropriate mitigations going forward.

Intel's official statement to us, which is likely their standpoint for the general public, highlights a list of recommended BIOS and software settings, such as those found in Intel's Extreme Tuning Utility (XTU). There's no mention of specific motherboard vendors or models, but the above settings should alleviate crashing and instability issues by preventing motherboards from pushing CPUs too hard.

It remains to be seen just how motherboard vendors will opt to address the issue, as all of the motherboard vendors we contacted today didn't have anything official to say about the matter. With that said, however, a few motherboard vendors have recently released a wave of new BIOSes, adding a new profile called "Intel Baseline" or similar. In all cases, these new BIOSes seem to do exactly what it says on the label, configuring the system to run at Intel's actual, suggested stock settings, and thus ensuring the stability of system in exchange for reduced performance.

With that said, these new Intel baseline settings are still not being used as the default settings for high-end motherboards. So the out-of-the-box user experience is still for MCE and other features to be enabled, pushing these processors to their performance limit. Users who actually want baseline performance – and the guaranteed stability it comes with – will still need to go into the BIOS and explicitly select this profile.

Ultimately, given the spec-defying state of high-end motherboards over the last decade, this is a badly-needed improvement. But still, as Intel has yet to wrap up their root cause investigation and issue formal guidance to consumers, we're not quite to the end of this saga just yet. There are still some developments to come, as we expect to hear more in May.

Qualcomm Intros Snapdragon X Plus, Details Complete Snapdragon X Launch Day Chip Stack

As Qualcomm prepares for the mid-year launch of their forthcoming Snapdragon X SoCs for PCs, and the eagerly anticipated Oryon CPU cores within, the company is finally shoring up their official product plans, and releasing some additional technical details in the process. Thus far the company has been demonstrating their Snapdragon X Elite SoC in its highest-performing, fully-enabled configuration. But the retail Snapdragon X Elite will not be a single part; instead, Qualcomm is preparing a whole range of chip configurations for various price/performance tiers in the market. Altogether, there will be 3 Snapdragon X Elite SKUs that differ in CPU and GPU performance.

As well, the company is introducing a second Snapdragon X tier, Snapdragon X Plus, for those SKUs positioned below the Elite performance tier. As of today, this will be a single configuration. But if the Snapdragon X lineup is successful and demand warrants it, I would not be surprised to see Qualcomm expand it further – as they have certainly left themselves the room for it in their product stack. In the meantime, with Qualcomm’s expected launch competition now shipping (Intel Core Ultra Meteor Lake and AMD Ryzen Mobile 8040 Hawk Point), the company is also very confident that even these reduced performance Snapdragon X Plus chips will be able to beat Intel and AMD in multithreaded performance – never mind the top-tier Snapdragon X Elite chips.

Qualcomm will be launching this expanded four chip stack at once; so both Snapdragon X Elite and Snapdragon X Plus tier devices should be available at the same time. The company’s goal is still to have devices on the shelf “mid-year”, although the company isn’t providing any more precise guidance than that. With Qualcomm’s CEO, Cristiano Amon, set to deliver a Computex keynote in June, I expect we’ll get more specific details on timings then, along with the company and its partners using the event to announce and showcase some retail laptop designs. So this is very much looking like a summer launch at the moment.

In the meantime, Qualcomm is already showing off what their Snapdragon X Plus chips can do with a fresh set of live benchmarks, akin to their Snapdragon X Elite performance previews from October 2023. We’ll dive into those in a bit, but suffice it to say, Qualcomm knows the score, and they want to make sure the entire world knows when they’re winning.

AMD Announces Ryzen Pro 8000 and Ryzen Pro 8040 Series CPUs: Commercial Desktop Gets AI

AMD is looking to drive the AI PC market with options across multiple product lines, which aren't limited to consumer processors. While primarily designed for the commercial sector, AMD has announced the Ryzen Pro 8000 'Phoenix' series of APUs for desktops, which AMD claims is the first professional-grade CPU to include an NPU designed to provide on-chip AI neural processing capabilities. AMD has also announced the Ryzen Pro 8040 'Hawk Point' series of mobile processors designed for commercial laptops and notebooks.

AMD's Ryzen Pro 8000 and Ryzen Pro 8040 series processors come with support from AMD's Pro Manageability and AMD Pro Business Ready suites and are built with AMD's current generation Zen 4 cores. The Ryzen Pro 8000 and Ryzen Pro 8040 series processors are similar to their consumer-level counterparts. However, they have additional security features such as AMD Memory Guard, AMD Secure Processor, and Microsoft Pluton.

Touching on the differentiating factors between the non-Pro-consumer chips and the Ryzen Pro series, there is plenty for the commercial and enterprise market regarding security. In what is a first, the Ryzen Pro 8000 series is the first desktop platform to integrate Microsoft Pluton security features designed to protect when connecting to the cloud. Other features include AMD Memory Guard, which encrypts login credentials, keys, and text files stored in the DRAM. AMD Pro Security ties the AMD Zen 4 shadow stack and other layers in directly with the software stack, which, in this case, is Microsoft Windows 11 OS security. 

Another notable feature that AMD is hammering home is the on-chip AI capabilities of the included Ryzen AI neural processor unit (NPU), which allows enterprises to run AI workloads locally to mitigate privacy concerns by transferring data to and from the cloud. Although the current generation of NPUs embedded into processors are limited in what they can do, Ryzen AI is a driving factor within the AI PC, as manufacturers and SDVs are looking to utilize AI-accelerated features built into software, such as Microsoft with their AI-powered Copilot tool.

Although there are requirements that now must be met to ensure a PC is considered an 'AI PC,' Microsoft announced that their AI PC requirement is 45 TOPS of performance from the NPU alone, which none of the current generation of chips from AMD and Intel currently meet. In the desktop space, AMD currently has the lead as Intel has presently no offerings with an NPU, although, in the mobile space, AMD with their Ryzen 8040 (Hawk Point) and Intel with their Meteor Lake processors provide plenty of choice for users.

AMD Ryzen Pro 8000 Series (Zen 4)
AnandTech Cores
Threads
Base
Freq
Boost
Freq
L3
Cache
iGPU
 
TDP
Ryzen 7 Pro 8700G 8C / 16T 4200 5100 16 MB R780M (12 CUs) 45-65 W
Ryzen 7 Pro 8700GE 8C / 16T 3650 5100 16 MB R780M (12 CUs) 35 W
Ryzen 5 Pro 8600G 6C / 12T 4350 5000 16 MB R760M (8 CUs) 45-65 W
Ryzen 5 Pro 8500G 6C / 12T 3550 5000 16 MB R740M (4 CUs) 45-65 W
Ryzen 5 Pro 8600GE 6C / 12T 3900 5000 16 MB R760M (8 CUs) 35 W
Ryzen 5 Pro 8500GE 6C / 12T 3400 5000 16 MB R740M (4 CUs) 35 W
Ryzen 3 Pro 8300G 4C / 8T 3450 4900 8 MB R740M (4 CUs) 45-65 W
Ryzen 3 Pro 8300GE 4C / 8T 3500 4900 8 MB R740M (4 CUs) 35 W

Looking at the AMD Ryzen Pro 8000 series, AMD has announced eight new processors that include the same specifications as the non-Pro Ryzen 8000G APU counterparts. Two primary types of Ryzen Pro 8000 processors are set to be available: four with a configurable TDP of between 45 and 65 W and four with a flat TDP of 35 W for lower-powered environments. Leading the line-up is the Ryzen 7 Pro 8700G, which is identical in core specifications to the Ryzen 7 8700G APU, and has an 8C/16T (Zen 4) configuration with a base frequency of 4.2 GHz and a boost frequency of up to 5.1 GHz.

Even the Ryzen 7 Pro 8700GE, which is the 35 W version, has a 5.1 GHz boost frequency, although it has a slower base clock of 3.65 GHz. Both models have 16 MB of L3 cache, including AMD's integrated Radeon 780M (12 CUs) mobile graphics. All of the eight Ryzen Pro 8000 series models range from 4C/8T offerings with 8 MB of L3 cache and 4.9 GHz boost clocks, 6C/12T models with 5.0 GHz boost clocks and 16 MB of L3 cache, and those as mentioned above 8700/8700GE with 8C/16T.

While we take all performance figures given by manufacturers and vendors with a pinch of salt, AMD claims their Ryzen Pro 8000 series offers up to 19% better performance than Intel's 14th-gen Core series processors. AMD's match-up is the Ryzen 7 Pro 8700G vs. the Intel Core i7-14700, with AMD claiming a 47% victory in the Passmark 11 benchmark and 3X the graphics performance in 3D Mark Time Spy. This isn't entirely surprising because the Ryzen 7 Pro 8700G benefits from integrated RDNA3 graphics and AMD's Zen 4 cores.

AMD Ryzen Pro 8040 Series (Zen 4)
AnandTech Cores
Threads
Base
Freq
Boost
Freq
L3
Cache
iGPU TDP
Ryzen 9 Pro 8945HS 8C / 16T 4000 5200 16 MB 12 35-54 W
Ryzen 7 Pro 8845HS 8C / 16T 3800 5100 16 MB 12 35-54 W
Ryzen 7 Pro 8840HS 8C / 16T 3300 5100 16 MB 12 20-28 W
Ryzen 5 Pro 8645HS 6C / 12T 4300 5000 16 MB 8 35-54 W
Ryzen 5 Pro 8640HS 6C / 12T 3500 4900 16 MB 8 20-28 W
 
Ryzen 7 Pro 8840U 8C / 16T 3300 5100 16 MB 12 15-28 W
Ryzen 5 Pro 8640U 6C / 12T 3500 4900 16 MB 8 15-28 W
Ryzen 5 Pro 8540U* 6C / 12T 3200 4900 16 MB 4 15-28 W
*Ryzen 5 Pro 8540U is the only chip without AMD's Ryzen AI NPU

Moving onto AMD's latest Ryzen Pro 8040 processors for the mobile market, AMD has refreshed their Hawk Point family for the enterprise market. AMD has eight new processors, which are segmented into two families, the HS series and the U series. The HS series has five new chips, which range from 6C/12T up to 8C/16T, all with varying levels of clock speed and TDPs. At the top of the line-up is the Ryzen 9 Pro 8945HS, which is a direct replacement for the Ryzen 9 Pro 7940HS, and as such, it comes with the same 4.0 GHz base clock and 5.2 GHz boost clocks.

Pivitong to TDP, AMD offers the Ryzen 9 Pro 8945HS, Ryzen 7 Pro 8845HS, and Ryzen 5 Pro 8645HS with a configurable TDP of between 35 and 54 W. In contrast, the Ryzen 7 Pro 8840HS and the Ryzen 5 Pro 8640HS are designed for lower-powered laptops with a cTDP of 20-28 W. Regarding cache, all of the announced Ryzen Pro 8040 series models come with 16 MB of L3 Cache. At the same time, specifications such as the integrated graphics and clock speeds all correspond to the consumer line-up, the Ryzen 8040 series.

AMD's in-house performance figures show the Ryzen 7 Pro 8840U at 15 W performing better than Intel's Core Ultra 7 165H at 28 W. Still, as we always do with performance figures provided by vendors, take these with a pinch of salt. AMD claims a 30% combined increase in performance across the board in workloads, including Geekbench v6, Blender, PCMark 10, PCMark Night Raid, and UL Procyon. While there are plenty of different areas where performance gains and losses can be achieved, AMD does claim that their Ryzen 9 Pro 8945HS at 45 W vs. the Intel Core Ultra 9 185H at 45 W is 50% better in Topaz Labs Video AI Gaia 4X software; they did both use discrete graphics in this test according to AMD's slide deck.

The other notable thing is that all of the Ryzen Pro 8040 series processors, except the bottom SKU, the Ryzen 5 Pro 8540U, come with AMD's Ryzen AI NPU integrated into the silicon. While the AI PC ecosystem is still growing, AMD and over 150+ ISVs look to continue the trend that AI will power more software features in the future than we've seen so far. We are still in the infancy stage of the ecosystem despite much of the marketing targeting the AI functionality, but as we see higher-performing NPUs coming in the next generation of chips, at least ones that can match Microsoft 45 NPU TOPS requirement to run Copilot locally, much of the benefit of the NPU is currently down to how much power can be saved.

The introduction of the Ryzen Pro 8000/8040 series completes AMD's commercial client platform, along with the readily available Ryzen Threadripper Pro 7000-WX series for commercial and professional workstations. What sets these AMD Ryzen Pro series processors apart from the consumer (non-Pro) variants is support for the AMD Pro Manageability toolkit, which includes features such as cloud-based remote manageability to enable off-site IT technicians the ability to access devices remotely, as well WPA3 SAE encryption, which provides client-to-cloud protection for enterprises over shared networks.

AMD has not announced when the Ryzen Pro 8000 series APUs or the Ryzen Pro 8040 mobile chips will be available for purchase. However, we expect a wide array of OEMs, such as HP and Lenovo, to be already in the process of readying solutions that should hit the market soon.

Intel and Sandia National Labs Roll Out 1.15B Neuron “Hala Point” Neuromorphic Research System

While neuromorphic computing remains under research for the time being, efforts into the field have continued to grow over the years, as have the capabilities of the specialty chips that have been developed for this research. Following those lines, this morning Intel and Sandia National Laboratories are celebrating the deployment of the Hala Point neuromorphic system, which the two believe is the highest capacity system in the world. With 1.15 billion neurons overall, Hala Point is the largest deployment yet for Intel’s Loihi 2 neuromorphic chip, which was first announced at the tail-end of 2021.

The Hala Point system incorporates 1152 Loihi 2 processors, each of which is capable of simulating a million neurons. As noted back at the time of Loihi 2’s launch, these chips are actually rather small – just 31 mm2 per chip with 2.3 billion transistors each, as they’re built on the Intel 4 process (one of the only other Intel chips to do so, besides Meteor Lake). As a result, the complete system is similarly petite, taking up just 6 rack units of space (or as Sandia likes to compare it to, about the size of a microwave), with a power consumption of 2.6 kW. Now that it’s online, Hala Point has dethroned the SpiNNaker system as the largest disclosed neuromorphic system, offering admittedly just a slightly larger number of neurons at less than 3% of the power consumption of the 100 kW British system.


A Single Loihi 2 Chip (31 mm2)

Hala Point will be replacing an older Intel neuromorphic system at Sandia, Pohoiki Springs, which is based on Intel’s first-generation Loihi chips. By comparison, Hala Point offers ten-times as many neurons, and upwards of 12x the performance overall,

Both neuromorphic systems have been procured by Sandia in order to advance the national lab’s research into neuromorphic computing, a computing paradigm that behaves like a brain. The central thought (if you’ll excuse the pun) is that by mimicking the wetware writing this article, neuromorphic chips can be used to solve problems that conventional processors cannot solve today, and that they can do so more efficiently as well.

Sandia, for its part, has said that it will be using the system to look at large-scale neuromorphic computing, with work operating on a scale well beyond Pohoiki Springs. With Hala Point offering a simulated neuron count very roughly on the level of complexity of an owl brain, the lab believes that a larger-scale system will finally enable them to properly exploit the properties of neuromorphic computing to solve real problems in fields such as device physics, computer architecture, computer science and informatics, moving well beyond the simple demonstrations initially achieved at a smaller scale.

One new focus from the lab, which in turn has caught Intel’s attention, is the applicability of neuromorphic computing towards AI inference. Because the neural networks themselves behind the current wave of AI systems are attempting to emulate the human brain, in a sense, there is an obvious degree of synergy with the brain-mimicking neuromorphic chips, even if the algorithms differ in some key respects. Still, with energy efficiency being one of the major benefits of neuromorphic computing, it’s pushed Intel to look into the matter further – and even build a second, Hala Point-sized system of their own.

According to Intel, in their research on Hala Point, the system has reached efficiencies as high as 15 TOPS-per-Watt at 8-bit precision, albeit while using 10:1 sparsity, making it more than competitive with current-generation commercial chips. As an added bonus to that efficiency, the neuromorphic systems don’t require extensive data processing and batching in advance, which is normally necessary to make efficient use of the high density ALU arrays in GPUs and GPU-like processors.

Perhaps the most interesting use case of all, however, is the potential for being able to use neuromorphic computing to enable augmenting neural networks with additional data on the fly. The idea behind this being to avoid re-training, as current LLMs require, which is extremely costly due to the extensive computing resources required. In essence, this is taking another page from how brains operate, allowing for continuous learning and dataset augmentation.

But for the moment, at least, this remains a subject of academic study. Eventually, Intel and Sandia want systems like Hala Point to lead to the development of commercial systems – and presumably, at even larger scales. But to get there, researchers at Sandia and elsewhere will first need to use the current crop of systems to better refine their algorithms, as well as better figure out how to map larger workloads to this style of computing in order to prove their utility at larger scales.

AMD Quietly Launches Ryzen 7 8700F and Ryzen 5 8400F Processors

AMD has recently expanded its Ryzen 8000 series by introducing the Ryzen 7 8700F and Ryzen 5 8400F processors. Initially launched in China, these chips were added to AMD's global website, signaling they are available worldwide, apparently from April 1st. Built from the recent Zen 4-based Phoenix APUs using the TSMC 4nm node as their Zen 4 mobile chips, these new CPUs lack integrated graphics. However, the Ryzen 7 8700F does include the integrated Ryzen AI NPU for added capabilities in a world currently dominated by AI and moving it directly into the PC.

The company's decision to announce these chips in China aligns with its strategy to offer Ryzen solutions at every price point in the market. Although AMD didn't initially disclose the full specifications of these F-series models, and we did reach out to the company to ask about them, they refused to discuss them with us. Their listing on the website has now been updated with a complete list of specifications and features, with everything but the price mentioned.

AMD Ryzen 8000G vs. Ryzen 8000F Series (Desktop)
Zen 4 (Phoenix)
AnandTech Cores/Threads Base
Freq
Turbo
Freq
GPU GPU
Freq
Ryzen AI
(NPU)
L3 Cache
(MB)
TDP MSRP
Ryzen 7
Ryzen 7 8700G 8/16 4200 5100 R780M
12 CUs
2900 Y 16 65W $329
Ryzen 7 8700F 8/16 4100 5000 - - Y 16 65W ?
Ryzen 5
Ryzen 5 8600G 6/12 4300 5000 R760M
8 CUs
2800 Y 16 65W $229
Ryzen 5 8400F 6/12 4200 4700 - - N 16 65W ?

The Ryzen 7 8700F features an 8C/16T design, with 16MB of L3 cache and the same 65W TDP as the Ryzen 7 8700G. Although the base clock speed is 4.1 GHz, it boosts to 5.0 GHz; this is 100 MHz less on both base/boost clocks than the 8700G. Meanwhile, the Ryzen 5 8400F is a slightly scaled-down version of the Ryzen 8600G APU, with 6C/12, 16MB of L3 cache, and again has a 100 MHz reduction to base clocks compared to the 8600G. Unlike the Ryzen 5 8400F, the Ryzen 7 8700F keeps AMD's Ryzen AI NPU, adding additional capability for generative AI. 

The Ryzen 5 8400F can boost up to 4.7 GHz, 300 MHz slower than the Ryzen 5 8600G. AMD also allows overclocking for these new F-series chips, which means users could potentially boost the performance of these processors to match their G-series equivalents.

Pricing details are still pending, but to remain competitive, AMD will likely need to price these CPUs below the 8700G and 8600G, as well as the Ryzen 7 7700 and Ryzen 5 7600. These CPUs offer, albeit very limited, integrated graphics and have double the L3 cache capacity, along with higher boost clocks than the 8000F series chips, so pricing is something to consider whenever pricing becomes available.

Intel Teases Lunar Lake At Intel Vision 2024: 100+ TOPS Overall, 45 TOPS From NPU Alone

During the main keynote at Intel Vision 2024, Intel CEO Pat Gelsinger flashed a completed Lunar Lake chip off, much like EVP and General Manager of Intel's Client Computing Group (CCG) Michelle Johnston Holthaus did back at CES 2024. The contrast between the two glimpses of the Lunar Lake chip is that Pat Gelsinger gave us something juicier than just a photo op. He clarified and claimed the levels of AI performance we can expect to see when Lunar Lake launches.

According to Intel's CEO Pat Gelsinger, Lunar Lake, scheduled to be launched towards the end of this year, is set to raise the bar even further regarding on-chip AI capabilities and performance. At Intel's own Vision event, aptly named Intel Vision, current CEO of Intel Pat Gelsinger stated during his presentation that Lunar Lake will be the 'flagship SoC' for the next generation of AI PCs. Intel claims that Lunar Lake will have 3X the AI performance of their current Meteor Lake SoC, which is impressive as Meteor Lake is estimated to be running around 34 TOPS combined with the NPU, GPU, and CPU.

Factoring in the NPU within Meteor Lake, 11 of the 34 TOPS come solely from the NPU. Still, Intel claims that the NPU on Lunar Lake will hit a large 45 TOPs, akin to the Hailo-10 add-in card and similar to Qualcomm's Snapdragon X Elite processor. Factoring in the integrated graphics and the compute cores, Intel is claiming a combined total of over 100 TOPS, and with Microsoft's self-imposed guidelines of what constitutes an 'AI PC' coming in at 40 TOPS, Intel's NPU fits the bill.

Intel also alludes to how they are gaining a load of TOPS performance from the NPU, whether that be with new technologies; the NPU will likely be built in a more advanced node, perhaps Intel 18A. Another thing Intel didn't highlight was how they were measuring the TOPS performance, whether that be INT8 or INT4.

Still, one thing is clear: Intel wants to increase on-chip AI capabilities in desktop PCs and notebooks with each generation. Intel is also attempting to leverage more AI performance to help boost its goal to ship 100 million AI PCs by the end of 2025. Intel has already announced that it's shipped 5 million thus far and plans to sell another 40 million units by the end of the year.

The Intel Core Ultra 7 155H Review: Meteor Lake Marks A Fresh Start To Mobile CPUs

One of the most significant talking points of the last six months in mobile computing has been Intel and their disaggregated Meteor Lake SoC architecture. Meteor Lake, along with the new Core and Core Ultra naming scheme, also heralds the dawn of their first tiled architecture for the mobile landscape on the latest Intel 4 node with Foveros packaging. In December last year, Intel unveiled their premier Meteor lake-based Core Ultra H series, with five SKUs ranging from two with 4P+8E+2LP/18T and three with 6P+8E+2LP/22T models. Since then, many vendors and manufacturers have launched notebooks capitalizing on Intel's latest multi-tiled Meteor Lake SoC architecture as the heart of power and performance, driving their latest models into 2024.

Today, we will focus on an attractive ultrabook via the ASUS Zenbook 14 OLED (UX3405MA), which features a thin and light design and is powered by Intel's latest Meteor Lake Core Ultra 7 155H processor. While much of the attention is going to come on how the Intel Core Ultra 7 155H with its 6P+8E+2LP/22T configuration and 8 Arc Xe integrated graphics cores will perform, the ASUS Zenbook 14 OLED UX3405MA has plenty of features within its sleek Ponder Blue colored shell to make it very interesting. Included is a 14" 3K (2880 x 1800) touchscreen OLED panel with a 120 Hz refresh rate, 32 GB of LPDDR5X memory (soldered), and a 1 TB NVMe M.2 SSD for storage.

Intel To Discontinue Boxed 13th Gen Core CPUs for Enthusiasts

In an unexpected move, Intel has announced plans to phase out the boxed versions of its enthusiasts-class 13th Generation Core 'Raptor Lake' processors. According to a product change notification (PCN) published by the company last month, Intel plans to stop shipping these desktop CPUs by late June. In its place will remain Intel's existing lineup of boxed 14th Generation Core processors, which are based on the same 'Raptor Lake' silicon and typically carry higher performance for similar prices.

Intel customers and distributors interested in getting boxed versions 13th Generation Core i5-13600K/KF, Core i7-13700K/KF, and Core i9-13900K/KF/KS 'Raptor Lake' processors with unlocked multiplier should place their orders by May 24, 2024. The company will ship these units by June 28, 2024. Meanwhile, the PCN does not mention any change to the availability of tray versions of these CPUs, which are sold to OEMs and wholesalers.

The impending discontinuation of Intel's boxed 13th Generation Core processors comes as the company's current 14th Generation product line, 'Raptor Lake Refresh' is largely a rehash of the same silicon at slightly higher clockspeeds. Case in point: all of the discontinued SKUs are based on Intel's B0 Raptor Lake silicon, which is still being used for their 14th Gen counterparts. So Intel has not discontinued producing any Raptor Lake silicon; only the number of retail SKUs is getting cut-down.

As outlined in our 14th Generation Core/Raptor Lake Refresh review, the 14th Gen chips largely make their 13th Gen counterparts redundant, offering better performance at every tier for the same list price. And with virtually all current generation motherboards supporting both generation of chips, apparently Intel feels there's little reason to keep around what's essentially older, slower SKUs of the same silicon.

Interestingly, the retirement of the enthusiast-class 13th Generation Core chips is coming before Intel discontinues their even older 12th Generation Core 'Alder Lake' processors. 12th Gen chips are still available to this day in both boxed and tray versions, and the Alder Lake silicon itself is still widely in use in multiple product families. So even though Alder Lake shares the same platform as Raptor Lake, the chips based on that silicon haven't been rendered redundant in the same way that 13th Gen Core chips have.

Ultimately, it would seem that Intel is intent on consolidating and simplifying its boxed retail chip offerings by retiring their near-duplicate SKUs. Which for PC buyers could present a minor opportunity for a deal, as retailers work to sell off their remaining 13th Gen enthusiast chips.

Google Develops In-House Arm 'Axion' CPU for Datacenters

Google was among the first hyperscalers build custom silicon for its services, starting first with tensor processing units (TPUs) for its AI initiatives, and then video transcoding units (VCUs) for the YouTube service. But unlike its industry peers, the company has been slower to adopt custom CPU designs, prefering to stick to off-the-shelf chips from the major CPUs. This is finally changing at Google, with the announcement that the company has developed its own in-house datacenter CPU, the Axion.

Google's Axion processor is based on the Arm Neoverse V2 (Arm v9) platform, which is Arm's current-generation design for high-performance server CPUs, and is already employed in other chips such as NVIDIA's Grace and Amazon's Graviton4. Within Google, Axion is aimed at a wide variety of workloads, including web and app servers, data analytics, microservices, and AI training. Google claims that the Axion processors boast up to 50% higher performance and up to 60% better energy efficiency compared to current-generation x86-based processors, as well as offer a 30% higher performance compared to competing Arm-based CPUs for datacenters. Though as is increasingly common for the cryptic cloud side of Google's business, least for now the company isn't specifying what processors they're comparing Axion to in these metrics.

While Google is not disclosing core counts or the full specifications of its Axion CPUs, the company is revealing that they are incorporating their own secret sauce into the silicon in the form of the company's Titanium purpose-built microcontrollers. These microcontrollers are designed to handle basic operations like networking and security, as well as offload storage I/O processing to Hyperdisk block storage service. As a result of this offloading, virtually all of the CPU core resources should be available to actual workloads. As for the chip's memory subsystem, Axion uses conventional dual-rank DDR5 memory modules.

"Google's announcement of the new Axion CPU marks a significant milestone in delivering custom silicon that is optimized for Google's infrastructure, and built on our high-performance Arm Neoverse V2 platform," said Rene Haas, CEO of Arm. "Decades of ecosystem investment, combined with Google's ongoing innovation and open-source software contributions ensure the best experience for the workloads that matter most to customers running on Arm everywhere." 

Google has previously deployed Arm-based processors for its own services, including BigTable, Spanner, BigQuery, and YouTube Ads and is ready to offer instances based on its Armv9-based Axion CPUs to its customers that can use software developed for Arm architectures.

Sources: GoogleWall Street Journal

Intel Unveils New Branding For 6th Generation Xeon Processors: Intel Xeon 6

At Intel's Vision 2024 event, which is being held in Phoenix, AZ, has seen several key announcements. On the datacenter CPU front, Intel is using the show to unveil their newest branding for their venerable family of Xeon processors. Beginning with this year's sixth generation of processors, Intel is "evolving" the Xeon brand by retiring the "Xeon Scalable" branding in favor of Intel's new and simplified "Xeon 6" brand.

The Xeon 6 family is set to launch later this year with two primary variants: an all-performance (P) core chip codenamed Granite Rapids, and an all-efficiency (E) core chip codenamed Sierra Forest. Both of these chips will be sold under the Xeon 6 brand and sit on top of the same motherboard platform, with the Xeon 6 branding intended in part to underscore this shared platform. Though speaking of the chips themselves, at this time Intel isn't illustrating how the two sub-series of chips will be differentiated in terms of product numbers.

Over the last year, we've extensively covered Intel's Granite Rapids and Sierra Forest. For more information about Granite Rapids and Sierra Forest, here are some of our key pieces:

Intel debuted their Xeon Scalable branding in 2017 with the launch of the Xeon Platinum 8100 series, which was built using their Skylake microarchitecture. At the time Xeon Scalable replaced Intel's older Xeon E/EP/EX vX branding, resetting the generation count in the process.

Moving forward to 2024, Intel is looking to build an ecosystem befitting the current demands of technologies within key areas such as data centers, Edge, and the PC. Intel is laying the foundations for what it calls 'Intel Enterprise AI.' Using a vast array of frameworks and accelerators and working closely with partners, ISVs, and GSIs to create a large and open ecosystem, the newly branded Intel Xeon 6 platforms will be key in the enterprise market as we advance.

Intel has adopted a newer and simpler nomenclature for Granite Rapids and Sierra Forest, starting with the Intel Xeon 6 processors. Sierra Forest Xeon 6 processors are set to launch in Q2 of 2024, which include a chip featuring 288 E-cores. It will be the first product to adopt this new branding, which is designed to ease customer navigation between models. Meanwhile the Xeon 6 P-core Granite Rapids processors will come later.

Ultimately, the Xeon brand itself and what it entails (enterprise, workstation, server, and data center) isn't going anywhere. Instead, Intel is putting an increased focus on the generation number of the platform by moving it front and center, to more clearly highlight what generation of technology a part belongs to.

As mentioned, Intel's Xeon 6 processors, based on their Sierra Forest architecture, are set to launch in Q2 2024, while the Granite Rapids Xeon 6 platform is expected to come sometime in the second half of 2024.

PCIe 7.0 Draft 0.5 Spec Available: 512 GB/s over PCIe x16 On Track For 2025

PCI-SIG this week released version 0.5 of the PCI-Express 7.0 specification to its members. This is the second draft of the spec and the final call for PCI-SIG members to submit their new features to the standard. The latest update on the development of the specification comes a couple months shy of a year after the PCI-SIG published the initial Draft 0.3 specificaiton, with the PCI-SIG using the latest update to reiterate that development of the new standard remains on-track for a final release in 2025.

PCIe 7.0 is is the next generation interconnect technology for computers that is set to increase data transfer speeds to 128 GT/s per pin, doubling the 64 GT/s of PCIe 6.0 and quadrupling the 32 GT/s of PCIe 5.0. This would allow a 16-lane (x16) connection to support 256 GB/sec of bandwidth in each direction simultaneously, excluding encoding overhead. Such speeds will be handy for future datacenters as well as artificial intelligence and high-performance computing applications that will need even faster data transfer rates, including network data transfer rates.

To achieve its impressive data transfer rates, PCIe 7.0 doubles the bus frequency at the physical layer compared to PCIe 5.0 and 6.0. Otherwise, the standard retains pulse amplitude modulation with four level signaling (PAM4), 1b/1b FLIT mode encoding, and the forward error correction (FEC) technologies that are already used for PCIe 6.0. Otherwise, PCI-SIG says that the PCIe 7.0 speicification also focuses on enhanced channel parameters and reach as well as improved power efficiency. 

Overall, the engineers behind the standard have their work cut out for them, given that PCIe 7.0 requires doubling the bus frequency at the physical layer, a major development that PCIe 6.0 sidestepped with PAM4 signaling. Nothing comes for free in regards to improving data signaling, and with PCIe 7.0, the PCI-SIG is arguably back to hard-mode development by needing to improve the physical layer once more – this time to enable it to run at around 30GHz. Though how much of this heavy lifting will be accomplished through smart signaling (and retimers) and how much will be accomplished through sheer materials improvements, such as thicker printed circuit boards (PCBs) and low-loss materials, remains to be seen.

The next major step for PCIe 7.0 is finalization of the version 0.7 of specification, which is considered the Complete Draft, where all aspects must be fully defined, and electrical specifications must be validated through test chips. After this iteration of the specification is released, no new features can be added. PCIe 6.0 eventually went through 4 major drafts – 0.3, 0.5, 0.7, and 0.9 – before finally being finalized, so PCIe 7.0 is likely on the same track.

Once finalized in 2025, it should take a few years for the first PCIe 7.0 hardware to hit the shelves. Although development work on controller IP and initial hardware is already underway, that process extends well beyond the release of the final PCIe specification.

Report: China to Pivot from AMD & Intel CPUs To Domestic Chips in Government PCs

China has initiated a policy shift to eliminate American processors from government computers and servers, reports Financial Times. The decision is aimed to gradually eliminate processors from AMD and Intel from system used by China's government agencies, which will mean lower sales for U.S.-based chipmakers and higher sales of China's own CPUs.

The new procurement guidelines, introduced quietly at the end of 2023, mandates government entities to prioritize 'safe and reliable' processors and operating systems in their purchases. This directive is part of a concerted effort to bolster domestic technology and parallels a similar push within state-owned enterprises to embrace technology designed in China.

The list of approved processors and operating systems, published by China's Information Technology Security Evaluation Center, exclusively features Chinese companies. There are 18 approved processors that use a mix of architectures, including x86 and ARM, while the operating systems are based on open-source Linux software. Notably, the list includes chips from Huawei and Phytium, both of which are on the U.S. export blacklist.

This shift towards domestic technology is a cornerstone of China's national strategy for technological autonomy in the military, government, and state sectors. The guidelines provide clear and detailed instructions for exclusively using Chinese processors, marking a significant step in China's quest for self-reliance in technology.

State-owned enterprises have been instructed to complete their transition to domestic CPUs by 2027. Meanwhile, Chinese government entites have to submit progress reports on their IT system overhauls quarterly. Although some foreign technology will still be permitted, the emphasis is clearly on adopting local alternatives.

The move away from foreign hardware is expected to have a measurable impact on American tech companies. China is a major market for AMD (accounting for 15% of sales last year) and Intel (commanding 27% of Intel's revenue), contributing to a substantial portion of their sales. Additionally, Microsoft, while not disclosing specific figures, has acknowledged that China accounts for a small percentage of its revenues. And while government sales are only a fraction of overall China sales (as compared to the larger commercial PC business) the Chinese government is by no means a small customer.

Analysts questioned by Financial Times predict that the transition to domestic processors will advance more swiftly for server processors than for client PCs, due to the less complex software ecosystem needing replacement. They estimate that China will need to invest approximately $91 billion from 2023 to 2027 to overhaul the IT infrastructure in government and adjascent industries.

Intel Announces Core i9-14900KS: Raptor Lake-R Hits Up To 6.2 GHz

For the last several generations of desktop processors from Intel, the company has released a higher clocked, special-edition SKU under the KS moniker, which the company positions as their no-holds-barred performance part for that generation. For the 14th Generation Core family, Intel is keeping that tradition alive and well with the announcement of the Core i9-14900KS, which has been eagerly anticipated for months and finally unveiled for launch today. The Intel Core i9-14900KS is a special edition processor with P-Core turbo clock speeds of up to 6.2 GHz, which makes it the fastest desktop processor in the world... at least in terms of advertised frequencies it can achieve.

With their latest KS processor, Intel is looking to further push the envelope on what can be achieved with the company's now venerable Raptor Lake 8+16 silicon. With a further 200 MHz increase in clockspeeds at the top end, Intel is looking to deliver unrivaled desktop performance for enthusiasts. At the same time, as this is the 4th iteration of the "flagship" configuration of the RPL 8+16 die, Intel is looking to squeeze out one more speed boost from the Alder/Raptor family in order to go out on a high note before the entire architecture starts to ride off into the sunset later this year. To get there, Intel will need quite a bit of electricity, and $689 of your savings.

SiPearl's Rhea-2 CPU Added to Roadmap: Second-Gen European CPU for HPC

SiPearl, a processor designer supported by the European Processor Initiative, is about to start shipments of its very first Rhea processor for high-performance computing workloads. But the company is already working on its successor currently known as Rhea-2, which is set to arrive sometimes in 2026 in Exascale supercomputers.

SiPearl's Rhea-1 datacenter-grade system-on-chip packs 72 off-the-shelf Arm Neoverse V1 cores designed for HPC and connected using a mesh network. The CPU has an hybrid memory subsystem that supports both HBM2E and DDR5 memory to get both high memory bandwidth and decent memory capacity as well as supports PCIe interconnects with the CXL protocol on top. The CPU was designed by a contract chip designer and is made by TSMC on its N6 (6 nm-class) process technology.

The original Rhea is to a large degree a product aimed to prove that SiPearl, a European company, can deliver a datacenter-grade processor. This CPU now powers Jupiter, Europe's first exascale system that uses nodes powered by four Rhea CPUs and NVIDIA's H200 AI and HPC GPUs. Given that Rhea is SiPearl's first processor, the project can be considered as fruitful.

With its 2nd generation Rhea processors, SiPearl will have to develop something that is considerably more competitive. This is perhaps why Rhea-2 will use a dual-chiplet implementation. Such a design will enable SiPearl to pack more processing cores and therefore offer higher performance. Of course, it remains to be seen how many cores SiPearl plans to integrate into Rhea 2, but at least the CPU company is set to adopt the same design methodologies as AMD and Intel.

Given the timing for SiPearl's Rhea 2 and the company's natural with to preserve software compatibility with Rhea 1, it is reasonable to expect the processor to adopt Arm's Neoverse V3 cores for its second processor. Arm's Neoverse V3 offer quite a significant uplift compared to Neoverse V2 (and V1) and can scale to up to 128 cores per socket, which should be quite decent for HPC applications in 2025 – 2026.

While SiPearl will continue developing CPUs, it remains to be seen whether EPI will manage to deliver AI and HPC accelerators that are competitive against those from NVIDIA, AMD, and Intel.

Intel CEO Pat Gelsinger to Deliver Computex Keynote, Showcasing Next-Gen Products

Taiwan External Trade Development Council (TAITRA), the organizer of Computex, has announced that Pat Gelsinger, chief executive of Intel, will deliver a keynote at Computex 2024 on June 4, 2024. Focusing on the trade show's theme of artificial intelligence, he will showcase Intel's next-generation AI-enhanced products for client and datacenter computers.

According to TAITRA's press release, Pat Gelsinger will discuss how Intel's product lineup, including the AI-accelerated Intel Xeon, Intel Gaudi, and Intel Core Ultra processor families, opens up new opportunities for client PCs, cloud computing, datacenters, and network and edge applications. He will also discuss superior performance-per-watt and lower cost of ownership of Intel's Xeon processors, which enhance server capacity for AI workloads.

The most intriguing part of Intel's Computex keynote will of course be the company's next-generation AI-enhanced products for client and datacenter computers. At this point Intel is prepping numerous products that pose a lot of interest, including the following:

  • Arrow Lake and Lunar Lake processors made on next-generation process technologies for desktop and mobile PCs and featuring all-new microarchitectures;
  • Granite Rapids CPUs for datacenters based on a high-performance microarchitecture;
  • Sierra Forest processors with up to 288 cores for cloud workloads based on codenamed Crestmont energy-efficient cores;
  • Gaudi 3 processors for AI workloads that promise to quadruple BF16 performance compared to Gaudi 2.
  • Battlemage graphics processing units.

All of these products are due to be released in 2024-2025, so Intel could well demonstrate them and showcase their performance advantages, or even formally launch some of them, at Computex. What remains to be seen is whether Intel will also give a glimpse at products that are further away, such as Clearwater Forest and Falcon Shores.

Tenstorrent Licenses RISC-V CPU IP to Build 2nm AI Accelerator for Edge

Tenstorrent this week announced that it had signed a deal to license out its RISC-V CPU and AI processor IP to Japan's Leading-edge Semiconductor Technology Center (LSTC), which will use the technology to build its edge-focused AI accelerator. The most curious part of the announcement is that this accelerator will rely on a multi-chiplet design and the chiplets will be made by Japan's Rapidus on its 2nm fabrication process, and then will be packaged by the same company.

Under the terms of the agreement, Tenstorrent will license its datacenter-grade Ascalon general-purpose processor IP to LSTC and will help to implement the chiplet using Rapidus's 2nm fabrication process. Tenstorrent's Ascalon is a high-performance out-of-order RISC-V CPU design that features an eight-wide decoding. The Ascalon core packs six ALUs, two FPUs, and two 256-bit vector units and when combined with a 2nm-class process technology promises to offer quite formidable performance.

The Ascalon was developed by a team led by legendary CPU designer Jim Keller, the current chief executive of Tenstorrent, who used to work on successful projects by AMD, Apple, Intel, and Tesla.

In addition to general-purpose CPU IP licensing, Tenstorrent will co-design 'the chip that will redefine AI performance in Japan.' This apparently means that Tenstorrent  does not plan to license LSTC its proprietary  Tensix cores tailored for neural network inference and training, but will help to design a proprietary AI accelerator generally for inference workloads.

"The joint effort by Tenstorrent and LSTC to create a chiplet-based edge AI accelerator represents a groundbreaking venture into the first cross-organizational chiplet development in semiconductor industry," said Wei-Han Lien, Chief Architect of Tenstorrent's RISC-V products. "The edge AI accelerator will incorporate LSTC's AI chiplet along with Tenstorrent's RISC-V and peripheral chiplet technology. This pioneering strategy harnesses the collective capabilities of both organizations to use the adaptable and efficient nature of chiplet technology to meet the increasing needs of AI applications at the edge."

Rapidus aims to start production of chips on its 2nm fabrication process that is currently under development sometimes in 2027, at least a year behind TSMC and a couple of years behind Intel. Yet, if it starts high-volume 2nm manufacturing in 2027, it will be a major breakthrough from Japan, which is trying hard to return to the global semiconductor leaders.

Building an edge AI accelerator based on Tenstorrent's IP and Rapidus's 2nm-class production node is a big deal for LSTC, Tenstorrent, and Rapidus as it is a testament for technologies developed by these three companies.

"I am very pleased that this collaboration started as an actual project from the MOC conclusion with Tenstorrent last November," said Atsuyoshi Koike, president and CEO of Rapidus Corporation. "We will cooperate not only in the front-end process but also in the chiplet (back-end process), and work on as a leading example of our business model that realizes everything from design to back-end process in a shorter period of time ever."

❌