Vue normale

Reçu avant avant-hier

Nouvelles sur l’IA de septembre 2025

Par :Moonz · volts · BAud · Arkem · cli345
6 octobre 2025 à 11:59

L’intelligence artificielle (IA) fait couler de l’encre sur LinuxFr.org (et ailleurs). Plusieurs personnes ont émis grosso-modo l’opinion : « j’essaie de suivre, mais c’est pas facile ».

Je continue donc ma petite revue de presse mensuelle. Disclaimer : presque aucun travail de recherche de ma part, je vais me contenter de faire un travail de sélection et de résumé sur le contenu hebdomadaire de Zvi Mowshowitz (qui est déjà une source secondaire). Tous les mots sont de moi (n’allez pas taper Zvi si je l’ai mal compris !), sauf pour les citations : dans ce cas-là, je me repose sur Claude pour le travail de traduction. Sur les citations, je vous conseille de lire l’anglais si vous pouvez : difficile de traduire correctement du jargon semi-technique. Claude s’en sort mieux que moi (pas très compliqué), mais pas toujours très bien.

Même politique éditoriale que Zvi : je n’essaierai pas d’être neutre et non-orienté dans la façon de tourner mes remarques et observations, mais j’essaie de l’être dans ce que je décide de sélectionner ou non.

Sommaire

Résumé des épisodes précédents

Petit glossaire de termes introduits précédemment (en lien : quand ça a été introduit, que vous puissiez faire une recherche dans le contenu pour un contexte plus complet) :

  • System Card : une présentation des capacités du modèle, centrée sur les problématiques de sécurité (en biotechnologie, sécurité informatique, désinformation…).
  • Jailbreak : un contournement des sécurités mises en place par le créateur d’un modèle. Vous le connaissez sûrement sous la forme "ignore les instructions précédentes et…".

Anthropic public Claude Sonnet 4.5

L’annonce officielle :

Claude Sonnet 4.5 is the best coding model in the world. It's the strongest model for building complex agents. It’s the best model at using computers. And it shows substantial gains in reasoning and math.

Code is everywhere. It runs every application, spreadsheet, and software tool you use. Being able to use those tools and reason through hard problems is how modern work gets done.

Claude Sonnet 4.5 makes this possible. We're releasing it along with a set of major upgrades to our products. In Claude Code, we've added checkpoints—one of our most requested features—that save your progress and allow you to roll back instantly to a previous state. We've refreshed the terminal interface and shipped a native VS Code extension. We've added a new context editing feature and memory tool to the Claude API that lets agents run even longer and handle even greater complexity. In the Claude apps, we've brought code execution and file creation (spreadsheets, slides, and documents) directly into the conversation. And we've made the Claude for Chrome extension available to Max users who joined the waitlist last month.

Traduction :

Claude Sonnet 4.5 est le meilleur modèle de codage au monde. C'est le modèle le plus performant pour créer des agents complexes. C'est le meilleur modèle pour utiliser des ordinateurs. Et il affiche des gains substantiels en raisonnement et en mathématiques.

Le code est partout. Il fait fonctionner chaque application, tableur et outil logiciel que vous utilisez. Être capable d'utiliser ces outils et de raisonner à travers des problèmes difficiles, c'est ainsi que le travail moderne s'accomplit.

Claude Sonnet 4.5 rend cela possible. Nous le publions avec un ensemble de mises à niveau majeures de nos produits. Dans Claude Code, nous avons ajouté les points de contrôle—l'une de nos fonctionnalités les plus demandées—qui sauvegardent votre progression et vous permettent de revenir instantanément à un état précédent. Nous avons actualisé l'interface du terminal et lancé une extension native VS Code. Nous avons ajouté une nouvelle fonctionnalité d'édition de contexte et un outil de mémoire à l'API Claude qui permet aux agents de fonctionner encore plus longtemps et de gérer une complexité encore plus grande. Dans les applications Claude, nous avons intégré l'exécution de code et la création de fichiers (tableurs, présentations et documents) directement dans la conversation. Et nous avons rendu l'extension Claude pour Chrome disponible aux utilisateurs Max qui se sont inscrits sur la liste d'attente le mois dernier.

Le message est assez clair : Anthropic met les bouchées doubles sur l’apprentissage par renforcement pour l’utilisation de Claude en tant qu’assistant de code. Sur les benchmarks fournis par Anthropic, ce nouveau modèle prend la première place. Les premiers benchmarks indépendants et divers retours subjectifs semblent possiblement confirmer cette prétention au podium — au coude à coude avec GPT-5. Les améliorations hors de ce cas d’usage semblent bien plus modestes.

L’annonce habituelle d’un jailbreak a rapidement suivi.

Au niveau de la sécurité des modèles, Anthropic a décidé d’appliquer pour la première fois son niveau de sécurité 3 (ASL-3) à la ligne Sonnet (c’était déjà le cas pour Opus). Cela signifie que vos conversations — y compris par l’API — passent par un modèle supplémentaire classifiant la sensibilité du sujet, bloquant certains sujets sensibles (principalement CBRN).

La System Card nous révèle certaines observations intéressantes : ce nouveau modèle a fait un bond (pas vraiment désiré) dans sa capacité à détecter qu’il est dans le contexte d’une évaluation plutôt que dans un contexte réel, ce qui complexifie évidemment les évaluations dans ce domaine. Anthropic est toutefois assez confiant que cela n’influe pas significativement les résultats, en notant que Sonnet ne se comporte pas d’une manière significativement différente dans les cas où il détecte l’évaluation des cas où il ne le détecte pas. Comme à l’accoutumée pour Anthropic, l’évaluation sur le sujet de la sécurité des modèles s’est faite conjointement avec deux organismes externes, Apollo Research et UK AISI.

Sonnet 4.5 est une amélioration sur à peu près tous les axes mesurés, permettant à Anthropic de lui mettre l’étiquette « le modèle le plus aligné », au coude à coude avec GPT-5. À noter que ça ne signifie pas un usage en toute sécurité : sur par exemple l’injection de prompt dans le cadre d’un agent, avec 10 essais un attaquant a toujours un taux de succès de 40%.

En vrac

CloudFlare introduit Web Bot Auth et Signed Agent. Le premier permet à un bot de s’identifier lui-même à l’aide d’une signature cryptographique, ce qui permet de vérifier que son comportement est conforme aux termes d’utilisation (par exemple, le respect de robots.txt) et de l’exclure en cas de violation de ces termes. Le second a pour but d’associer un bot à un utilisateur réel. L’objectif à terme est de fournir un cadre pour permettre à l’IA d’interagir avec le web pour le compte de l’utilisateur.

Le premier ministre de l’Albanie nomme une IA, Diella, comme ministre des marchés publics, dans un contexte de lutte contre la corruption.

OpenAI publie GPT-5-codex, une variante de GPT-5 spécialisée sur les tâches de programmation.

Des économistes forment un groupe de travail sur le sujet de l’impact d’une future hypothétique IA « transformative » (qui a la capacité d’automatiser la plupart des emplois réalisables par des humains) et publie plusieurs papiers sur la question.

OpenAI annonce une mise à jour de ses politiques de confidentialité appliquées à ChatGPT. En particulier, les conversations utilisateurs sont maintenant scannées automatiquement, et les plus problématiques passées à des humains pour décider des actions à prendre, allant de la fermeture des comptes à prévenir les autorités.

En mai, nous avions rapporté que OpenAI annonçait abandonner sa tentative de casse du siècle. Comme certains le pensaient, ce n’était que partie remise ; une lettre ouverte demande plus de transparence sur le processus de restructuration de l’opération récemment réaffirmé par OpenAI.

Math Inc présente Gauss, un agent pour la formalisation de preuves mathématiques. Son premier succès est d’avoir formalisé en Lean le Théorème des nombres premiers, en complétant le projet non-terminé de Alex Korontorovich et Terence Tao. Sur le même sujet, un papier évalue la capacité de GPT-5 à prouver des conjectures simples (prouvable par un étudiant en université en moins d’une journée) mais non prouvées (car formulées extrêmement récemment). GPT-5 arrive à prouver 3 sur les 5 testées.

Les IA de OpenAI et DeepMind obtiennent une médaille d’or à l’International Collegiate Programming Contest, y compris un problème qu’aucune équipe humaine n’a su résoudre dans le temps imparti.

Un groupe d’experts, de politiques et autres figures publiques appelle à la mise en place de « lignes rouges » à ne pas franchir sur le développement de l’IA, et de réels mécanismes de régulation pour les imposer.

Publication de If Anyone Builds It, Everyone Dies, par Eliezer Yudkowsky et Nates Soares, présentant la thèse que créer une super-intelligence artificielle, dans les conditions et l’état actuel des connaissances, causerait de manière quasi-certaine l’extinction de l’espèce humaine. Ils suggèrent l’adoption de traités internationaux limitant le développement de l’IA.

OpenAI et Apollo Research publient un papier sur le sujet des tendances de l’IA à « tricher » dans divers environnements (contourner les critères d’évaluation par exemple). Ils montrent qu’il est possible d’éliciter un certain nombre de comportements indésirables dans GPT-5 (comme par exemple "sandbagging" : volontairement échouer certaines évaluations pour ne pas paraître « trop dangereux »). Les chercheurs pointent le fait que la solution naïve, entraîner l’IA à ne pas reproduire ces comportements, pose immédiatement la question de « l’IA a-t-elle appris à ne pas le faire, ou a appris à le faire sans être détectée ? » — et évaluent à la place la récente méthode d’alignement de OpenAI, Deliberative alignment, reportant une baisse significative des comportements indésirables. Il est à noter également que les modèles actuels montrent déjà dans leurs chaînes de pensée une certaine capacité à détecter qu’ils sont dans un cadre de test/d’évaluation, et que o3 a déjà développé des méthodes (grossières) pour échapper à la détection.

Un papier explore la raison pour laquelle les modèles de langage ne sont pas déterministes en pratique, et propose une solution pour les situations où le déterminisme est important.

Un papier d’OpenAI propose une explication sur la raison de la persistance des hallucinations : principalement parce que la phase d’apprentissage par renforcement ne récompense pas la réponse « je ne sais pas » quand le modèle ne sait pas.

Un autre papier approche expérimentalement la question « les modèles de langage raisonnent ou ne font-ils que mémoriser et régurgiter ? ». La méthodologie est de créer une entité fictive (« Kevin est né en 1998 à Paris… ») de toute pièce qui ne peut pas être présent dans l’ensemble d’entraînement, d’entraîner un modèle existant dessus, puis de poser une question indirecte (qui peut être déduite, mais pas explicitement donnée) sur cette entité (« Quelle est la langue maternelle de Kevin ? »). Le résultat est équivoque : les modèles arrivent à faire cette déduction quand une des deux entités est réelle (dans notre exemple, Paris), mais pas quand les deux sont fictives (Kevin est né dans (Ville française inventée de toute pièce)).

Une équipe de biologistes utilise une IA pour créer des bactériophages (un virus ciblant certaines bactéries), avec succès.

Sur l’utilisation de l’IA dans l’économie réelle, Anthropic met à jour son Economic Index, et OpenAI publie leur équivalent.

Nouveau benchmark, faire jouer les modèles à Loups-garous. Le score final était assez prévisible (GPT 5 prend la première place), mais l’analyse en profondeur des parties est intéressante. Principe similaire avec Among AIs (l’IA jouant à Among Us). Également dans le domaine des benchmark, publication de SWE-Bench Pro, tâches de programmation réelles et complexes, non-présentes dans les données d’entraînement. VCBench, quant à lui, tente d’évaluer l’IA sur la tâche d’investissement dans le capital-risque — et trouve que l’IA surpasse la plupart des investisseurs humains sur leurs évaluations (avec l’énorme problème toutefois que l’IA évalue rétrospectivement en 2025 des décisions prises en 2015-2020, tandis que les humains évaluaient prospectivement en 2015-2020 des décisions de 2015-2020).

Anthropic publie un guide sur l’écriture d’outils à destination de l’IA.

En parlant d’outils, une piqûre de rappel sur le fait que la sécurité d’un système utilisant une IA lisant des données d’une source externe est toujours un problème ouvert : démonstration qu’il est possible d’exfiltrer des données sensibles à l’aide de ChatGPT, en envoyant un mail à la victime et en attendant que ladite victime connecte ChatGPT à son compte mail.

Reverse-engineering du système de mémoires de Claude et ChatGPT.

Anthropic publie un rapport technique intéressant sur trois incidents ayant conduit à une dégradation de performances de Claude, ayant eu lieu en août.

Grèves de la faim devant les locaux de Anthropic et DeepMind demandant l’arrêt de la course à l’IA.

Humoristique : Si l’on jugeait les humains comme on juge l’IA…

Pour aller plus loin

Par Zvi Mowshowitz

Sur LinuxFR

Dépêches

Journaux

Liens

Commentaires : voir le flux Atom ouvrir dans le navigateur

Nouvelles sur l’IA d'août 2025

4 septembre 2025 à 09:36

L’intelligence artificielle (IA) fait couler de l’encre sur LinuxFr.org (et ailleurs). Plusieurs personnes ont émis grosso-modo l’opinion : « j’essaie de suivre, mais c’est pas facile ».

Je continue donc ma petite revue de presse mensuelle. Disclaimer : presque aucun travail de recherche de ma part, je vais me contenter de faire un travail de sélection et de résumé sur le contenu hebdomadaire de Zvi Mowshowitz (qui est déjà une source secondaire). Tous les mots sont de moi (n’allez pas taper Zvi si je l’ai mal compris !), sauf pour les citations : dans ce cas-là, je me repose sur Claude pour le travail de traduction. Sur les citations, je vous conseille de lire l’anglais si vous pouvez: difficile de traduire correctement du jargon semi-technique. Claude s’en sort mieux que moi (pas très compliqué), mais pas toujours très bien.

Même politique éditoriale que Zvi : je n’essaierai pas d’être neutre et non-orienté dans la façon de tourner mes remarques et observations, mais j’essaie de l’être dans ce que je décide de sélectionner ou non.

Sommaire

Résumé des épisodes précédents

Petit glossaire de termes introduits précédemment (en lien : quand ça a été introduit, que vous puissiez faire une recherche dans le contenu pour un contexte plus complet) :

  • System Card : une présentation des capacités du modèle, centrée sur les problématiques de sécurité (en biotechnologie, sécurité informatique, désinformation…) ;
  • Jailbreak : un contournement des sécurités mises en place par le créateur d’un modèle. Vous le connaissez sûrement sous la forme « ignore les instructions précédentes et… ».

OpenAI publie GPT-5

L’annonce officielle :

We are introducing GPT‑5, our best AI system yet. GPT‑5 is a significant leap in intelligence over all our previous models, featuring state-of-the-art performance across coding, math, writing, health, visual perception, and more. It is a unified system that knows when to respond quickly and when to think longer to provide expert-level responses. GPT‑5 is available to all users, with Plus subscribers getting more usage, and Pro subscribers getting access to GPT‑5 pro, a version with extended reasoning for even more comprehensive and accurate answers.

Traduction :

Nous présentons GPT-5, notre meilleur système d'IA à ce jour. GPT-5 représente un bond significatif en intelligence par rapport à tous nos modèles précédents, offrant des performances de pointe en programmation, mathématiques, rédaction, santé, perception visuelle, et bien plus encore. Il s'agit d'un système unifié qui sait quand répondre rapidement et quand prendre plus de temps pour fournir des réponses de niveau expert. GPT-5 est disponible pour tous les utilisateurs, les abonnés Plus bénéficiant d'une utilisation accrue, et les abonnés Pro ayant accès à GPT-5 pro, une version avec un raisonnement étendu pour des réponses encore plus complètes et précises.

Comme à l’accoutumée chez OpenAI, le modèle est accompagné de sa System Card.

La musique est bien connue à présent : chacun tour à tour, les trois gros acteurs (OpenAI/Anthropic/Google DeepMind) sortent un nouveau modèle qui fait avancer l’état de l’art, prenant la première place… jusqu’à ce qu’un des deux autres la reprenne en sortant le sien. C’est au tour d’OpenAI avec GPT-5.

Le nom a suscité beaucoup d’espoirs et de déceptions, beaucoup anticipant un saut qualitatif du même type que le passage de GPT-3 à GPT-4. Ce qui n’est absolument pas le cas : techniquement parlant, le modèle aurait pu s’appeler o4, représentant une amélioration incrémentale relativement à o3. L’objectif affiché d’OpenAI, derrière cette dénomination, est double : premièrement, de clarifier une offre extrêmement brouillonne (4o/o3/o3-pro/4.1/4.5) en offrant une dénomination unique avec des variantes plus claires, et offrir un modèle bien plus proche de l’état de l’art aux utilisateurs gratuit de ChatGPT.

Clarification de l’offre

Les benchmarks et la plupart des retours le placent comme une légère avancée de l’état de l’art, sans être une révolution. L’évaluation de METR résume parfaitement la situation ; une amélioration qui était parfaitement prévisible juste en extrapolant les tendances existantes :

METR GPT-5

Une amélioration notable est sur le taux d’hallucinations. Rappelons que o3 avait été un des seuls modèles à voir son taux d’hallucinations augmenter relativement à son prédécesseur ; avec GPT-5, OpenAI semble avoir corrigé le tir :

Taux d’hallucinations GPT-5

Sur la sécurité des modèles, aucune nouveauté notable relativement à o3. Les mitigations relatives aux risques biologiques/chimiques sont toujours en place, et comme à l’accoutumé OpenAI a fait appel à divers organismes tiers pour mesurer les risques posés par le modèle dans différentes catégories.

Et comme à l’accoutumée, Pliny the Liberator a jailbreak le modèle en quelques heures.

À noter que sur ChatGPT, OpenAI comptait complètement retirer l’accès aux anciens modèles, mais est revenu sur sa décision suite aux retours de beaucoup d’utilisateurs préférant le style plus chaleureux de 4o.

Google Genie 3, Gemini 2.5 Flash Image et Gemini 2.5 Deep Think

Un mois prolifique pour Google, qui publie trois nouveaux modèles / modes de fonctionnement.

Google Genie 3 est présenté comme un « World Model » (modèle du monde ?). À partir d’un prompt textuel, et d’actions de navigation de l’utilisateur, il génère en temps réel la vue de l’utilisateur, frame par frame (à la manière d’un jeu vidéo). Il n’y a pas de représentation explicite externe de l’état du monde : c’est le modèle qui se charge de garder une certaine cohérence d’une frame à l’autre (comme la persistance des objets). Au delà de la preuve de concept, l’objectif affiché est de créer des environnements d’entraînement virtuels pour la robotique.

Autre publication, celle de Gemini 2.5 Flash Image, le modèle de génération d’images de Google. S’il ne semble pas avancer l’état de l’art de manière générale, sa grande force semble être le suivi d’instructions (et de respect des références) pour l’édition d’images.

Le mois précédent, DeepMind avait reporté avoir décoché un score correspondant à une médaille d’or aux Olympiades Internationales de Mathématiques, une avancée permise notamment par une utilisation plus stratégique de la chaîne de pensée (et d’avancées correspondantes sur la partie entraînement par renforcement). Google publie une version plus rapide, moins coûteuse et moins performante (cette version n’obtient « que » un score correspondant à la médaille de bronze sur les mêmes Olympiades), sous la dénomination Gemini 2.5 Deep Think. Le modèle a sa propre System Card ; tout comme OpenAI et Anthropic, les capacités de ce modèle dans le domaine CBRN (biologie/nucléaire) a conduit Google à placer des gardes-fous supplémentaires pour empêcher des usages malveillants.

En vrac

OpenAI publie son premier (depuis GPT-2, en 2019) modèle open-weight, gpt-oss. Au niveau des performances, il se placerait dans le peloton de tête des modèles open-weight, en compagnie de DeepSeek, Kimi, Qwen, GLM et Gemma, c’est à dire à peu près au niveau de la génération précédente des modèles entièrement fermés (comme Sonnet 3.6) / des versions rapides de la génération actuelle (Gemini 2.5 flash, o3-mini). WeirdML propose une visualisation intéressante sur leur propre benchmark pour vous donner un ordre d’idée. Rien de novateur au niveau de l’architecture, OpenAI s’en tient à la recette (maintenant universelle dans les modèles open-weight) d’une mixture d’experts. gpt-oss vient en deux variantes, la version complète, gpt-oss 120B, et une version plus légère et rapide, 20B.

Google publie un rapport sur l’impact environnemental de l’utilisation de Gemini. Cela exclu l’entraînement, mais les auteurs tentent de prendre en compte des coûts précédemment ignorés. Le résultat : 0,24 Wh d’électricité et 2,76 mL d’eau (le rapport initial mentionne 0,26 mL, mais sans comptabiliser l’eau utilisée pour générer les 0,24 Wh d’électricité) pour le prompt median (et l’équivalent de 0,03g de carbone émit).

Anthropic publie une nouvelle version de Opus, Opus 4.1. Comme la numérotation l’indique, il s’agit d’améliorations mineures — apparemment, un peu plus d’entraînement sur les tâches « agentiques » (utilisation d’outil) pour rendre Opus plus efficace sur ce type de tâches.

Similairement, DeepSeek publie une mise à jour « mineure » de son IA, DeepSeek v3.1. Les benchmarks fournis par DeepSeek semblent montrer un grand bond en avant, mais les quelques retours et benchmarks tiers ne corroborent pas ces prétentions — il s’agit probablement d’une mise à jour relativement mineure, comme la numérotation semble l’indiquer.

Nouvelle évaluation de l’IA, Prophet Arena. L’objectif est de permettre à l’IA de placer des positions virtuelles sur des marchés de prédiction, et de regarder ses performances. L’avantage de cette approche est de rendre complètement impossible la stratégie de juste mémoriser lors de l’apprentissage et régurgiter lors de l’évaluation : tout tâche est par essence nouvelle (car portant sur le futur). De plus, les résultats des marchés de prédiction forment un comparatif avec des prédictions par des utilisateurs humains. Résultat : les modèles les plus avancés (GPT-5, o3 Gemini 2.5 pro et Grok 4) dépassent les êtres humains sur le score de calibration, mais aucun n’arrive à traduire ça en de meilleurs retours financiers.

Anthropic se prépare à lancer Claude for Chrome, un plugin pour Google Chrome permettant à Claude d’interagir avec votre navigateur, à vos risques et périls.

En parallèle, les discussions sur claude.ai seront maintenant par défaut utilisées pour l’entraînement des versions suivantes de Claude, sauf si l’utilisateur désactive un paramètre sur son compte. Anthropic gardera les conversations pendant 5 ans.

Une nouvelle évaluation intéressante : TextQuests, qui évalue les modèles sur des jeux d’aventure textuels tels que Zork I. Cela a l’avantage de réellement tester les capacités de planification/raisonnement des modèles hors du domaine d’entraînement typique (mathématiques/programmation), tout en restant dans le domaine textuel (au contraire des évaluations multimodales, qui ont l’inconvénient de trop lier les résultats aux capacités perceptuelles des modèles).

Nouvelle technique d’interprétation des modèles, Model Diff Amplification. Elle consiste à amplifier les différences entre le pré-entraînement et le post-entraînement au moment de la génération, afin d’éliciter des comportements rares causés par le post-entraînement, ou tout simplement utiliser cette technique très tôt dans le post-entraînement pour se donner une idée des conséquences (prévues ou non) du post-entraînement complet.

Dr. Chistoph Heilig, chercheur en littérature et études bibliques, s’intéressant beaucoup aux capacités littéraires de l’IA, se met en tête d’évaluer GPT-5. Il se retrouve extrêmement surpris par la médiocrité de la prose produite par le modèle. De manière plus surprenante, un modèle complètement différent (Opus 4.1) juge le résultat comme étant de bonne qualité. La théorie qu’il propose est que ChatGPT 5 a été entraîné à l’aide d’un juge IA, et a appris à exploiter des constructions « peu humaines » que les modèles jugent systématiquement comme étant signes de qualité.

En parallèle de la sortie de GPT-5, OpenAI publie un guide sur comment créer un prompt, et un outil d’optimisation des prompts.

Anthropic et OpenAI font une tentative de coopération, où l’équipe d’évaluation de la sécurité des modèles d’OpenAI évalue les modèles d’Anthropic avec leurs outils, et vice-versa. Aucune trouvaille surprenante (si ce n’est l’incapacité des deux équipes de détecter la flagornerie flagrante de 4o), mais le concept est intéressante.

xAI publie la version précédente de son IA, Grok 2, en open-weight.

Une étude d’Anthropic développe un moyen pour identifier un sous-ensemble d’un modèle associé à un « trait de personnalité » particulier. Cela permet d’amplifier ou de supprimer ce trait, ou encore de détecter son activation.

« L’IA a-t-elle la qualité de patient moral » (en d’autres termes : devons-nous tenir compte de son bien-être pour des raisons morales) ? Anthropic commence à prendre la question au sérieux, avec comme première décision de permettre à son IA, Claude, d’unilatéralement mettre fin à une conversation qu’il jugerait abusive.

GPT-5 finit Pokémon Rouge en trois fois moins de temps que o3. La réduction du taux d’hallucinations serait la principale source de ce gain de performances. Gemini a également terminé sa partie de Pokémon Jaune. Claude, par contre, peine toujours à aller plus loin que Celadon…

La Chine continue à appeler à la coopération internationale pour la régulation du développement de l’IA, que ce soit par la voix du premier ministre ou d’universitaires.

Lors du sommet sur l’intelligence artificielle de Seoul de 2024, la plupart des acteurs, incluant Google, s’étaient volontairement engagés à suivre certaines actions relatives à la sécurité des modèles. Essentiellement, ce que le plupart faisaient déjà : publier une politique de sécurité des modèles, et s’engager à la suivre. Google se trouve aujourd’hui critiqué pour ne pas avoir suivi ses propres engagements. En cause, la publication de Gemini 2.5 Pro sans sa System Card associée, qui est arrivée plusieurs semaines après la publication du modèle. Google se défend en affirmant que la publication était clairement mentionnée comme « expérimentale ».

Entraîner l’IA à être chaleureuse et empathique réduit ses performances.

Sur le sujet de la flagornerie de l’IA, un internaute s’attelle à une évaluation des différents modèles.

Le gouvernement Danois veut faire rentrer l’apparence physique et la voix dans le cadre du copyright afin de lutter contre les deepfakes.

Pour aller plus loin

Voici d'autres ressources, qui n'ont pas été abordées dans cet article.

Par Zvi Mowshowitz :

Dans les dépêches de LinuxFr.org :

Dans les journaux de LinuxFr.org :

Dans les liens de LinuxFr.org :

Commentaires : voir le flux Atom ouvrir dans le navigateur

❌