Vue normale

À partir d’avant-hierFlux principal

Qualcomm Adds Snapdragon 7s Gen 3: Mid-Tier Snapdragon Gets Cortex-A720 Treatment

20 août 2024 à 13:00

Qualcomm this morning is taking the wraps off of a new smartphone SoC for the mid-range market, the Snapdragon 7s Gen 3. The second of Qualcomm’s down-market ‘S’ tier Snapdragon 7 parts, the 7s series is functionally the entry-level tier for the Snapdragon 7 family – and really, most Qualcomm-powered handsets in North America.

With three tiers of Snapdragon 7 chips, the 7s can easily be lost in the noise that comes with more powerful chips. But the latest iteration of the 7s is a bit more interesting than usual, as rather than reusing an existing die, Qualcomm has seemingly minted a whole new die for this part. As a result, the company has upgraded the 7s family to use Arm’s current Armv9 CPU cores, while using bits and pieces of Qualcomm’s latest IPs elsewhere.

Qualcomm Snapdragon 7-Class SoCs
SoC Snapdragon 7 Gen 3
(SM7550-AB)
Snapdragon 7s Gen 3
(SM7635)
Snapdragon 7s Gen 2
(SM7435-AB)
CPU 1x Cortex-A715
@ 2.63GHz

3x Cortex-A715
@ 2.4GHz

4x Cortex-A510
@ 1.8GHz
1x Cortex-A720
@ 2.5GHz

3x Cortex-A720
@ 2.4GHz

4x Cortex-A520
@ 1.8GHz
4x Cortex-A78
@ 2.4GHz

4x Cortex-A55
@ 1.95GHz
GPU Adreno Adreno Adreno
DSP / NPU Hexagon Hexagon Hexagon
Memory
Controller
2x 16-bit CH

@ 3200MHz LPDDR5 / 25.6GB/s

@ 2133MHz LPDDR4X / 17.0GB/s
2x 16-bit CH

@ 3200MHz LPDDR5 / 25.6GB/s

@ 2133MHz LPDDR4X / 17.0GB/s
2x 16-bit CH

@ 3200MHz LPDDR5 / 25.6GB/s

@ 2133MHz LPDDR4X / 17.0GB/s
ISP/Camera Triple 12-bit Spectra ISP

1x 200MP or 64MP with ZSL
or
32+21MP with ZSL
or
3x 21MP with ZSL

4K HDR video & 64MP burst capture
Triple 12-bit Spectra ISP

1x 200MP or 64MP with ZSL
or
32+21MP with ZSL
or
3x 21MP with ZSL

4K HDR video & 64MP burst capture
Triple 12-bit Spectra ISP

1x 200MP or 48MP with ZSL
or
32+16MP with ZSL
or
3x 16MP with ZSL

4K HDR video & 48MP burst capture
Encode/
Decode
4K60 10-bit H.265

H.265, VP9 Decoding

Dolby Vision, HDR10+, HDR10, HLG

1080p120 SlowMo
4K60 10-bit H.265

H.265, VP9 Decoding

HDR10+, HDR10, HLG

1080p120 SlowMo
4K60 10-bit H.265

H.265, VP9 Decoding

HDR10, HLG

1080p120 SlowMo
Integrated Radio FastConnect 6700
Wi-Fi 6E + BT 5.3
2x2 MIMO
FastConnect
Wi-Fi 6E + BT 5.4
2x2 MIMO
FastConnect 6700
Wi-Fi 6E + BT 5.2
2x2 MIMO
Integrated Modem X63 Integrated

(5G NR Sub-6 + mmWave)
DL = 5.0 Gbps
5G/4G Dual Active SIM (DSDA)
Integrated

(5G NR Sub-6 + mmWave)
DL = 2.9 Gbps
5G/4G Dual Active SIM (DSDA)
X62 Integrated

(5G NR Sub-6 + mmWave)
DL = 2.9 Gbps
5G/4G Dual Active SIM (DSDA)
Mfc. Process TSMC N4P TSMC N4P Samsung 4LPE

Officially, the Snapdragon 7s is classified as a 1+3+4 design – meaning there’s 1 prime core, 3 performance cores, and 4 efficiency cores. In this case, Qualcomm is using the same architecture for both the prime and efficiency cores, Arm’s current-generation Cortex-A720 design. The prime core gets to turbo as high as 2.5GHz, while the remaining A720 cores will turbo as high as 2.4GHz.

These are joined by the 4 efficiency cores, which, as is tradition, are based upon Arm’s current A5xx cores, in this case, A520. These can boost as high as 1.8GHz.

Compared to the outgoing Snapdragon 7s Gen 2, the switch in Arm cores represents a fairly significant upgrade, replacing an A78/A55 setup with the aforementioned A720/A520 setup. Notably, clockspeeds are pretty similar to the previous generation part, so most of the unconstrained performance uplift on this generation is being driven by improvements in IPC, though the faster prime core should offer a bit more kick for single-threaded workloads.

All told, touting a 20% improvement in CPU performance over the 7s Gen 2, though that claim doesn’t clarify whether it’s single or multi-threaded performance (or a mixture of both).

Meanwhile, graphics are driven by one of Qualcomm’s Adreno GPUs. As is usually the case, the company is not offering any significant details on the specific GPU configuration being used – or even what generation it is. A high-level look at the specifications doesn’t reveal any major features that weren’t present in other Snapdragon 7 parts. And Qualcomm isn’t bringing high-end features like ray tracing down to such a modest part. That said, I’ve previously heard through the tea leaves that this may be a next-generation (Adreno 800 series) design; though if that’s the case, Qualcomm is certainly not trying to bring attention to it.

Curiously, however, the video decode block on the SoC seems rather dated. Despite this being a new die, Qualcomm has opted not to include AV1 decoding – or, at least, opted not to enable it – so H.265 and VP9 are the most advanced codecs supported.

Compared to CPU performance gains, Qualcomm’s expected GPU performance gains are more significant. The company is claiming that the7s Gem 3 will deliver a 40% improvement in GPU performance over the 7s Gen 2.

Finally, the Hexagon NPU block on the SoC incorporates some of Qualcomm’s latest IP, as the company continues their focused AI push across all of their chip segments. Notably, the version of the NPU used here gets INT4 support for low precision client inference, which is new to the Snapdragon 7s family. As with Qualcomm’s other Gen 3 SoCs, the big drive here is for local (on-device) LLM execution.

With regards to performance, Qualcomm says that customers should expect to see a 30% improvement in AI performance relative to the 7s Gen 2.

Feeding all of these blocks is a 32-bit memory controller. Interestingly, Qualcomm has opted to support older LPDDR4X even with this newer chip, so the maximum memory bandwidth depends on the memory type used. For LPDDR4X-4266 that will be 17GB/sec, and for LPDDR5-6400 that will be 25.6GB/sec. In both cases, this is identical to the bandwidth available for the 7s Gen 2.

Rounding out the package, the 7s Gen 3 does incorporate some newer/more powerful camera hardware as well. We’re still looking at a trio of 12-bit Spectra ISPs, but the maximum resolution in zero shutter lag and burst modes has been bumped up to 64MPix. Video recording capabilities are otherwise identical on paper, as the 7s Gen 2 already supported 4K HDR capture.

Meanwhile on the wireless communication side of matters, the 7s Gen 3 packs one of Qualcomm’s integrated Snapdragon 5G modems. As with its predecessor, the 7s Gen 3 supports both Sub-6 and mmWave bands, with a maximum (theoretical) throughput of 2.9Gbps.

Eagle-eyed chip watchers will note, however, that Qualcomm is doing away with any kind of version information as of this part. So while the 7s Gen 2 used a Snapdragon X62 modem, the 7s Gen 3’s modem has no such designation – it’s merely an integrated Snapdragon modem. According to the company, this change has been made to “simplify overall branding and to be consistent with other IP blocks in the chipset.”

Similarly, the Wi-Fi/Bluetooth block has lost its version number; it is now merely a FastConnect block. In regards to features and specifications, this appears to be the same Wi-Fi 6E block that we’ve seen in half a dozen other Snapdragon SoCs, offering 2 spatial streams at channel widths up to 160MHz. It is worth noting, however, that since this is a newer SoC it’s certified for Bluetooth 5.4 support, versus the 5.2/5.3 certification other Snapdragon 7 chips have carried.

Finally, the Snapdragon 7s Gen 3 itself is being built on TSMC’s N4P process, the same process we’ve seen the last several Qualcomm SoCs use. And with this, Qualcomm has now fully migrated the entire Snapdragon 8 and Snapdragon 7 lines off of Samsung’s 4nm process nodes; all of their contemporary chips are now built at TSMC. And like similar transitions in the past, this shift in process nodes is coming with a boost to power efficiency. While it’s not the sole cause, overall Qualcomm is touting a 12% improvement in power savings.

Wrapping things up, Qualcomm’s launch customer for the Snapdragon 7s Gen 3 will be Xiaomi, who will be the first to launch a new phone with the chip. Following them will be many of the other usual suspects, including Realme and Sharp, while the much larger Samsung is also slated to use the chip at some point in the coming months.

Intel Sells Its Arm Shares, Reduces Stakes in Other Companies

14 août 2024 à 21:00

Intel has divested its entire stake in Arm Holdings during the second quarter, raising approximately $147 million. Alongside this, Intel sold its stake in cybersecurity firm ZeroFox and reduced its holdings in Astera Labs, all as part of a broader effort to manage costs and recover cash amid significant financial challenges.

The sale of Intel's 1.18 million shares in Arm Holdings, as reported in a recent SEC filing, comes at a time when the company is struggling with substantial financial losses. Despite the $147 million generated from the sale, Intel reported a $120 million net loss on its equity investments for the quarter, which is a part of a larger $1.6 billion loss that Intel faced during this period.

In addition to selling its stake in Arm, Intel also exited its investment in ZeroFox and reduced its involvement with Astera Labs, a company known for developing connectivity platforms for enterprise hardware. These moves are in line with Intel's strategy to reduce costs and stabilize its financial position as it faces ongoing market challenges.

Despite the divestment, Intel's past investment in Arm was likely driven by strategic considerations. Arm Holdings is a significant force in the semiconductor industry, with its designs powering most mobile devices, and, for obvious reasons, Intel would like to address these. Intel and Arm are also collaborating on datacenter platforms tailored for Intel's 18A process technology. Additionally, Arm might view Intel as a potential licensee for its technologies and a valuable partner for other companies that license Arm's designs.

Intel's investment in Astera Labs was also a strategic one as the company probably wanted to secure steady supply of smart retimers, smart cable modems, and CXL memory controller, which are used in volumes in datacenters and Intel is certainly interested in selling as many datacenter CPUs as possible.

Intel's financial struggles were highlighted earlier this month when the company released a disappointing earnings report, which led to a 33% drop in its stock value, erasing billions of dollars of capitalization. To counter these difficulties, Intel announced plans to cut 15,000 jobs and implement other expense reductions. The company has also suspended its dividend, signaling the depth of its efforts to conserve cash and focus on recovery. When it comes to divestment of Arm stock, the need for immediate financial stabilization has presumably taken precedence, leading to the decision.

The AMD Ryzen 9 9950X and Ryzen 9 9900X Review: Flagship Zen 5 Soars - and Stalls

14 août 2024 à 13:00

Earlier this month, AMD launched the first two desktop CPUs using their latest Zen 5 microarchitecture: the Ryzen 7 9700X and the Ryzen 5 9600X. As part of the new Ryzen 9000 family, it gave us their latest Zen 5 cores to the desktop market, as AMD actually launched Zen 5 through their mobile platform last month, the Ryzen AI 300 series (which we reviewed).

Today, AMD is launching the remaining two Ryzen 9000 SKUs first announced at Computex 2024, completing the current Ryzen 9000 product stack. Both chips hail from the premium Ryzen 9 series, which includes the flagship Ryzen 9 9950X, which has 16 Zen 5 cores and can boost as high as 5.7 GHz, while the Ryzen 9 9900X has 12 Zen 5 cores and offers boost clock speeds of up to 5.6 GHz.

Although they took slightly longer than expected to launch, as there was a delay from the initial launch date of July 31st, the full quartet of Ryzen 9000 X series processors armed with the latest Zen 5 cores are available. All of the Ryzen 9000 series processors use the same AM5 socket as the previous Ryzen 7000 (Zen 4) series, which means users can use current X670E and X670 motherboards with the new chips. Unfortunately, as we highlighted in our Ryzen 7 9700X and Ryzen 5 9600X review, the X870E/X870 motherboards, which were meant to launch alongside the Ryzen 9000 series, won't be available until sometime in September.

We've seen how the entry-level Ryzen 5 9600X and the mid-range Ryzen 7 9700X perform against the competition, but it's time to see how far and fast the flagship Ryzen 9 pairing competes. The Ryzen 9 9950X (16C/32T) and the Ryzen 9 9900X (12C/24T) both have a higher TDP (170 W/120 W respectively) than the Ryzen 7 and Ryzen 5 (65 W), but there are more cores, and Ryzen 9 is clocked faster at both base and turbo frequencies. With this in mind, it's time to see how AMD's Zen 5 flagship Ryzen 9 series for desktops performs with more firepower, with our review of the Ryzen 9 9950X and Ryzen 9 9900 processors.

Intel Publishes First Microcode Update for Raptor Lake Stability Issue, BIOSes Going Out Now

9 août 2024 à 19:00

Following Intel’s run of financial woes and Raptor Lake chip stability issues, the company could use some good news on a Friday. And this week they’re delivering just that, with the first version of the eagerly awaited microcode fix for desktop Raptor Lake processors – as well as the first detailed explanation of the underlying issue.

The new microcode release, version 0x129, is Intel’s first stab at addressing the elevated voltage issue that has seemingly been the cause of Raptor Lake processor degradation over the past year and a half. Intel has been investigating the issue all year, and after a slow start, in recent weeks has begun making more significant progress, identifying what they’re calling an “elevated operating voltage” issue in high-TDP desktop Raptor Lake (13th & 14th Generation Core) chips. Back in late July the company was targeting a mid-August release date for a microcode patch to fix (or rather, prevent) the degradation issue, and just ahead of that deadline, Intel has begun shipping the microcode to their motherboard partners.

Even with this new microcode, however, Intel is not done with the stability issue. Intel is still investigating whether it’s possible to improve the stability of already-degraded processors, and the overall tone of Intel’s announcement is very much that of a beta software fix – Intel won’t be submitting this specific microcode revision for distribution via operating system updates, for example. So even if this microcode is successful in stopping ongoing degradation, it seems that Intel hasn’t closed the book on the issue entirely, and that the company is presumably working towards a fix suitable for wider release.

Capping At 1.55v: Elevated Voltages Beget Elevated Voltages

So just what does the 0x129 microcode update do? In short, it caps the voltage of affected Raptor Lake desktop chips at a still-toasty (but in spec) 1.55v. As noted in Intel’s previous announcements, excessive voltages seem to be at the cause of the issue, so capping voltages at what Intel has determined is the proper limit should prevent future chip damage.

The company’s letter to the community also outlines, for the first time, just what is going on under the hood with degraded chips. Those chips that have already succumbed to the issue from repeated voltage spikes have deteriorated in such a way that the minimum voltage needed to operate the chip – Vmin – has increased beyond Intel’s original specifications. As a result, those chips are no longer getting enough voltage to operate.

Seasoned overclockers will no doubt find that this is a familiar story, as this is one of the ways that overclocked processors degrade over time. In those cases – as it appears to be with the Raptor Lake issue – more voltage is needed to keep a chip stable, particularly in workloads where the voltage to the chip is already sagging.

And while all signs point to this degradation being irreversible (and a lot of RMAs in Intel’s future), there is a ray of hope. If Intel’s analysis is correct that degraded Raptor Lake chips can still operate properly with a higher Vmin voltage, then there is the possibility of saving at least some of these chips, and bringing them back to stability.

This “Vmin shift,” as Intel is calling it, is the company’s next investigative target. According to the company’s letter, they are aiming to provide updates by the “end of August.”

In the meantime, Intel’s eager motherboard partners have already begun releasing BIOSes with the new microcode, with ASUS and MSI even jumping the gun and sending out BIOSes before Intel had a chance to properly announce the microcode. Both vendors are releasing these as beta BIOSes, reflecting the general early nature of the microcode fix itself. And while we expect most users will want to get this microcode in place ASAP to mitigate further damage on affected chips, it would be prudent to treat these beta BIOSes as just that.

Along those lines, as noted earlier, Intel is only distributing the 0x129 microcode via BIOS updates at this time. This microcode will not be coming to other systems via operating system updates. At this point we still expect distribution via OS updates to be the end game for this fix, but for now, Intel isn’t providing a timeline or other guidance for when that might happen. So for PC enthusiasts, at least, a BIOS update is the only way to get it for now.

Performance Impact: Generally Nil – But Not Always

Finally, Intel’s message also provides a bit of guidance on the performance impact of the new microcode, based on their internal testing. Previously the company has indicated that they expected no significant performance impact, and based on their expanded testing, by and large this remains the case. However, there are going to be some workloads that suffer from performance regressions as a result.

So far, Intel has found a couple of workloads where they are seeing regressions. This includes PugetBench GPU Effects Score and, on the gaming side of matters, Hitman 3: Dartmoor. Otherwise, virtually everything else Intel has tested, including common benchmarks like Cinebench, and major games, are not showing performance regressions. So the overall outcome of the fix is not quite a spotless recovery, but it’s also not leading to widespread performance losses, either.

As for AnandTech, we’ll be digging into this on our own benchmark suite as time allows. We have one more CPU launch coming up next week, so there’s no shortage of work to be done in the next few days. (Sorry, Gavin!)

Intel’s Full Statement

Intel is currently distributing to its OEM/ODM partners a new microcode patch (0x129) for its Intel Core 13th/14th Gen desktop processors which will address incorrect voltage requests to the processor that are causing elevated operating voltage.

For all Intel Core 13th/14th Gen desktop processor users: This patch is being distributed via BIOS update and will not be available through operating system updates. Intel is working with its partners to ensure timely validation and rollout of the BIOS update for systems currently in service.

Instability Analysis Update – Microcode Background and Performance Implications

In addition to extended warranty coverage, Intel has released three mitigations related to the instability issue – commonly experienced as consistent application crashes and repeated hangs – to help stabilize customer systems with Intel Core 13th and 14th gen desktop processors:
  1. Intel default settings to avoid elevated power delivery impact to the processor (May 2024)
  2. Microcode 0x125 to fix the eTVB issue in i9 processors (June 2024)
  3. Microcode 0x129 to address elevated voltages (August 2024)
Intel’s current analysis finds there is a significant increase to the minimum operating voltage (Vmin) across multiple cores on affected processors due to elevated voltages. Elevated voltage events can accumulate over time and contribute to the increase in Vmin for the processor.

The latest microcode update (0x129) will limit voltage requests above 1.55V as a preventative mitigation for processors not experiencing instability symptoms. This latest microcode update will primarily improve operating conditions for K/KF/KS processors. Intel is also confirming, based on extensive validation, all future products will not be affected by this issue.

Intel is continuing to investigate mitigations for scenarios that can result in Vmin shift on potentially impacted Intel Core 13th and 14th Gen desktop processors. Intel will provide updates by end of August.  

Intel’s internal testing – utilizing Intel Default Settings - indicates performance impact is within run-to-run variation (eg. 3DMark: Timespy, WebXPRT 4, Cinebench R24, Blender 4.2.0) with a few sub-tests showing moderate impacts (WebXPRT Online Homework; PugetBench GPU Effects Score). For gaming workloads tested, performance has also been within run-to-run variation (eg. Cyberpunk 2077, Shadow of the Tomb Raider, Total War: Warhammer III – Mirrors of Madness) with one exception showing slightly more impact (Hitman 3: Dartmoor). However, system performance is dependent on configuration and several other factors.

For unlocked Intel Core 13th and 14th Gen desktop processors, this latest microcode update (0x129) will not prevent users from overclocking if they so choose. Users can disable the eTVB setting in their BIOS if they wish to push above the 1.55V threshold. As always, Intel recommends users proceed with caution when overclocking their desktop processors, as overclocking may void their warranty and/or affect system health. As a general best practice, Intel recommends customers with Intel Core 13th and 14th Gen desktop processors utilize the Intel Default Settings.

In light of the recently announced extended warranty program, Intel is reaffirming its confidence in its products and is committed to making sure all customers who have or are currently experiencing instability symptoms on their 13th and/or 14th Gen desktop processors are supported in the exchange process. Users experiencing consistent instability symptoms should reach out to their system manufacturer (OEM/System Integrator purchase), Intel Customer Support (boxed processor), or place of purchase (tray processor) further assistance.
-Intel Community Post

Intel Postpones Innovation 2024 Event, Cites Poor Finances

8 août 2024 à 23:15

As Intel looks to streamline its business operations and get back to profitability in the face of weak revenues and other business struggles, nothing is off the table as the company looks to cut costs into 2025 – not even Intel’s trade shows. In an unexpected announcement this afternoon, Intel has begun informing attendees of its fall Innovation 2024 trade show that the event has been postponed. Previously scheduled for September of this year, Innovation is now slated to take place at some point in 2025.

Innovation is Intel’s regular technical showcase for developers, customers, and the public, and is the successor to the company’s legendary IDF show. In recent years the show has been used to deliver status updates on Intel’s fabs, introduce new client platforms like Panther Lake, launch new products, and more.

But after 3 years of shows, the future of Innovation is up in the air, as Intel has officially postponed the show – and with a less-than-assuring commitment to when it may return.

In a message posted on the Innovation 2024 website (registration required), and separately sent out via email, Intel announced the postponement of the show. In lieu of the show, Intel still plans on holding smaller developer events.

Innovation 2024 Update

After careful consideration, we have made the decision to postpone our Intel-hosted event, Intel Innovation in September, until 2025. For the remainder of 2024, we will continue to host smaller, more targeted events, webinars, hackathons and meetups worldwide through Intel Connection and Intel AI Summit events, as well as have a presence at other industry moments.

Depending on your development needs, please leverage the following developer resources to learn more: developer.intel.com, developer.intel.com/ai, open.intel.com and intel.com/support. Click here for a full list of Developer events.
-Intel Innovation Website

Separately, in a statement sent to PCMag, the company cited its current financial situation, and that they “are having to make some tough decisions as we continue to align our cost structure and look to assess how we rebuild a sustainable engine of process technology leadership.”

While Intel had not yet published a full agenda for the now-delayed show, Innovation 2024 was expected to be a major showcase for Intel’s Lunar Lake and Arrow Lake client processors, both of which are due this fall. Arrow Lake in particular is Intel’s lead product for their 20A process node – their first node implementing RibbonFETs and PowerVia backside power delivery – so its launch will be an important moment for the company. And while the postponement of Innovation won’t impact those launches, it means that Intel won’t have access to the same stage or built-in audience that comes with hosting your own trade show. Never mind the lost opportunities for software developers, who are the core audience for the show.

Officially, the show is just postponed. But given the lead time needed to reserve the San Jose Convention Center and similar venues, it’s unclear whether Intel will be able to host a show before the second half of 2025 – at which point we’d be closer to Innovation 2025, making Innovation 2024 de facto cancelled.

In the meantime, the company has already announced that they’ll be launching Lunar Lake at IFA in Germany in September. So that remains the next big trade show for Intel’s client chip group.

The AMD Ryzen 7 9700X and Ryzen 5 9600X Review: Zen 5 is Alive

7 août 2024 à 13:00

Last month, AMD launched their first processors using the Zen 5 microarchitecture for the mobile market via their Ryzen AI 300 series. Typically, with AMD Ryzen launches, we usually see the desktop parts come first, with the flagship model and then the mobile coming after. This time around, AMD has changed the dynamic of their release schedule with Zen 5 by launching the mobile chips first, which includes the Ryen AI 9 HX 370, which we reviewed last month. Today, Zen 5 on desktop has its turn, as AMD has launched two mid-range desktop processors, the Ryzen 7 9700X and the Ryzen 5 9600X.

AMD has launched two of the four announced Ryzen 9000 series processors today. The entry-level model is the Ryzen 5 9600X, a 6C/12T part with full-sized Zen 5 cores that can boost up to 5.4 GHz out of the box. The other model launched today is the Ryzen 7 9700X, which also features 8C/16T of Zen 5 and a boost clock speed of up to 5.5 GHz.

As part of AMD's push on platform longevity, the Ryzen 9000 series shares the same AM5 socket as its predecessor, meaning users can use X670E/X670 and B650E/B650 motherboards with a firmware update. We expected to see the newer X870X motherboards come with the Ryzen 9000 release, but unfortunately, these have been delayed.

So now we have Zen 5 in the form of the Ryzen 9000 series finally hitting the desktop, sans the top two SKUs, the Ryzen 9 9950X and Ryzen 9 9900X, which are coming later, it's time to see how much of an improvement Zen 5 is over Zen 4, not just in single-threaded but also multi-threaded workloads as AMD has promised up to an uplift of16% IPC on average. Both the Ryzen 7 9700X and Ryzen 5 9600X have a TDP of 65 W, which we see as more aligned with the non-X SKUs, so it will be interesting to see how Zen 5 performs in terms of both performance and efficiency.

Intel 18A Status Update: First Chips Booting, First External Customer Tape-Out in H1’25

6 août 2024 à 15:01

Following Intel’s painful Q2 earnings call and the announcement of their 2025 cost reduction plan last week, it has become increasingly evident that Intel’s future is in the hands of their foundry group. Between Intel’s IDM 2.0 initiative and their internal chip production plans, all roads lead back to Intel retaking – and retaining – fab process leadership. To win as both a chip designer and a contract chip maker, Intel needs to be able to regain the fab technology lead it once held. In many respects it’s a return to Intel’s classic (and most successful) operating model, but never has it been so risky at it is for the already weakened Intel.

Intel’s do-or-die dash for process leadership means that, for the next 18 months or so, all eyes are on the company’s 20A and 18A process nodes. The final nodes in their ambitious 5 Nodes in 4 Years roadmap, the twinned 20A/18A are the culmination of several new technologies, primarily Intel’s GAAFET implementation (RibbonFET), which is being combined with PowerVia, Intel’s backside power delivery network (BS-PDN) technology. 20A is set to serve as Intel’s early version of the node, and 18A the refined version for long-term use both internally, and as the first major external node for Intel Foundry. To say that everything rides on Intel 18A isn’t quite accurate, but it’s only a slight embellishment.

To that end, we’re going to see Intel deliver a lot of status updates on 18A over the next year as they continue to outline to investors and external customers alike that they have the manufacturing side of their business in order. And today is one of those days, with a fresh update on the state of 18A.

18A Chips Back & Booting

So what’s new with 18A? The biggest news out of Intel this morning is that their first 18A chips are back from the development fab and are successfully booting operating systems. This means the silicon not only works (power-on), but works well enough to complete core tasks. It’s a major step in bringing up a chip, and at this point, Intel wants to make sure to let the whole world know.

Earlier this year the company finished taping out both of its lead 18A chips: Panther Lake for clients, and Clearwater Forest for servers. And it’s both chips that are booting. This is made all the more significant by the fact that Clearwater Forest also relies on Intel’s die-to-die hybrid bonding packaging technology, Foveros Direct 3D, where it will be the lead product for that technology as well. Which for Intel, is a promising sign that not only are their silicon lithography ambitions paying off, but their intention to lead in advanced packaging is on-track as well.

And while Intel doesn’t normally talk about yields this early in the game, it’s interesting to note that in a separate Q&A being published this morning with Intel Foundry’s new boss, Kevin O’Buckley, the head of Foundry Services explicitly comments that Panther Lake is “yielding well”. Similarly, Panther Lake’s DDR memory controller (a complex block mixing logic with a PHY) is already running at its target frequency. Progress is going so well, apparently, that according to O’Buckley, it’s ahead of schedule on its product qualification milestones.

PDK 1.0 Released, First External Customer Tape-Out Expected in H1’25

As for Intel’s contract foundry business, the company is ramping up its efforts there now that the first full process design kit (PDK) is ready for 18A. Intel released their 18A PDK 1.0 last month, giving Intel’s customers (and potential customers) the tools to finally finish designing their chips for production. As is typically the case of a new node, pre-release PDKs were available for companies to get started on their designs, but the 1.0 PDK is typically needed to finish those designs and align them with the formal and finalized process specifications.

For Intel, getting an external PDK out for a leading-edge process node is no small feat, as the company has spent decades operating its fabs for the benefit of its internal product design teams. A useful PDK for external customers – and really, a useful fab environment altogether – not only needs process nodes that stick to their specifications rather than making bespoke adjustments, but it means that Intel needs to document and define all of this in a useful, industry standard fashion. One of the major failings of Intel’s previous efforts to get into the contract foundry business, besides being half-hearted efforts overall, is that they didn’t author PDKs that external companies could easily use. At the end of the day, Intel is looking to woo customers from TSMC and Samsung, and as such Intel needs to provide PDKs that chip designers accustomed to contemporary contract fabs can use.

Those efforts are finally paying off, if slowly. While still not sharing any names, Intel expects their first external customer chip design will tape out in the first half of 2025 (H1’25). And, as Intel hopes, it will be the first of many.

Ultimately, the hard work for Intel foundry is not yet complete, and it will continue from here. With initial 18A development wrapping up, Intel’s needs are no longer just fab R&D, but marketing and customer relations. Which, going back to the start of this article, is why Intel is so keen to release status updates on 18A: it’s part of a broader approach to entice new customers to give Intel a try. Even in the best-case scenario, it will take upwards of a decade to capture a majority of the market for fabbing cutting-edge chips. But Intel has to start that marketing push if they’re going to get there.

In the meantime, if all continues going well for Intel, we should be seeing the first 18A chips released in the latter half of near year.

Update: Intel Extends 13th & 14th Gen Core Retail CPU Warranties By 2 Years In Response to Chip Instability Issues

6 août 2024 à 11:00

Update 08/06: Intel published an additional note on Monday, confirming which SKUs are covered by the program. The full list of SKUs has been added to the article below, but it's essentially the 13600K/14600K and above – all of Intel's high-TDP desktop parts using the Raptor Lake B0 die.


Capping off an extensive (and expensive) week for Intel, the company has also announced that they are taking additional steps to address the ongoing chip stability issues with desktop Raptor Lake chips – the 13th and 14th Generation desktop Core processors. In order to keep owners whole, Intel will be extending the warranty on retail boxed Raptor Lake chips by two years, bringing the cumulative warranty for the chips to five years altogether.

This latest announcement comes as Intel is still in the process of preparing their major Raptor Lake microcode update, which is designed to mitigate the issue (or rather, further damage) by fixing the elevated voltage bug in their existing microcode that has led to the issue in the first place. That microcode update remains scheduled for mid-August, roughly a couple of weeks from now.

But until then – and depending on how quickly the update is distributed, even afterwards – there is still the matter of what to do with Raptor Lake desktop chips that are already too far gone and are consequently unstable. Intel’s retail boxed Raptor Lake chips ship with a 3 year warranty, which given the October 2022 launch date, would have the oldest of these chips covered until October of 2025 – a bit over a year from now. And while the in-development fix should mean that this is plenty of time to catch and replace any damaged chips, Intel has opted to take things one step further by extending the chips’ warranty to five years.

Overall, this is much-needed bit of damage control by Intel to restore some faith in their existing Raptor Lake desktop processor lineup. Even with the planned microcode fix, it remains unclear at best about what the long-term repercussions of the voltage bug is, and what it means for the lifespan of still-stable chips that receive the fixed microcode. In the best-case scenario, an extended warranty gives Raptor Lake owners a bit more peace of mind, and in a worst-case scenario, they’re now covered for a couple of years longer if the chip degradation issues persist.

One important thing to note, however, is that the extended warranty will only apply to boxed processors, i.e. Intel’s official retail chips. Intel’s loose chips that are sold by the tray to OEMs and certain distributors – commonly referred to as “tray” processors – are not covered by the extended warranty. While Raptor Lake tray processors do technically come with a three-year warranty of their own, Intel does not provide direct, end-user warranty service for these chips. Instead, those warranties are serviced by the OEM or distributor that sold the chip.

With the bulk of Intel’s chips going to OEMs and other professional system builders, Intel will undoubtedly need to settle things with those groups, as well. But with OEM dealings typically remaining behind closed doors, it’s unlikely we’ll hear about just what is agreed there. Regardless, whatever Intel does (or doesn’t do) to assuage OEMs and distributors, those groups will remain responsible for handling warranty claims for tray chips.

Finally, it should be noted that while today’s announcement outlines the two-year warranty extension, it doesn’t deliver the full details on the program. Intel expects to release more details on the extended warranty program “in the coming days.”

Intel’s full statement is below:

Intel is committed to making sure all customers who have or are currently experiencing instability symptoms on their 13th and/or 14th Gen desktop processors are supported in the exchange process. We stand behind our products, and in the coming days we will be sharing more details on two-year extended warranty support for our boxed Intel Core 13th and 14th Gen desktop processors.

In the meantime, if you are currently or previously experienced instability symptoms on your Intel Core 13th/14th Gen desktop system:
  • For users who purchased systems from OEM/System Integrators – please reach out to your system manufacturer’s support team for further assistance.
  • For users who purchased a boxed CPU – please reach out to Intel Customer Support for further assistance.
At the same time, we apologize for the delay in communications as this has been a challenging issue to unravel and definitively root cause.
-Intel Community Post

On Monday, Intel published an additional post outlining the specific SKUs covered by the extended warranty program. As the voltage/instability issues are thought to only affect high-TDP chips using Intel's Raptor Lake B0 die, which was used for both the 13th Gen and 14th Gen Core processors, the extended warranty program is also being setup to cover those processors specifically. In other words, only chips that are capable of being affected by the issue are receiving the extended warranty.

The rest of Intel's messaging is essentially unchanged from last week, telling customers of boxed processors to contact Intel directly, while tray processor owners need to contact their retailer/OEM.

Following Intel’s earlier announcement regarding two (2) year warranty extension – from date of purchase, up to a maximum of five (5) years - on Intel Core 13th/14th desktop processors, please see below for additional details on the program. Intel Core 13th/14th Gen Desktop Boxed/Tray CPUs

The following processors are covered by the warranty extension:

 
Processor Number
13th Generation Intel Core 14th Generation Intel Core
i9-13900KS i9-14900KS
i9-13900K i9-14900K
i9-13900KF i9-14900KF
i9-13900F i9-14900F
i9-13900 i9-14900
i7-13700K i7-14700K
i7-13700KF i7-14700KF
i7-13790F i7-14790F
i7-13700F i7-14700F
i7-13700 i7-14700
i5-13600K i5-14600K
i5-13600KF i5-14600KF

Warranty extension applies to new & previously purchased processors, if they are one of the Intel Core 13th/14th Gen SKUs listed above. This warranty coverage applies to all customers globally.

Standard warranty process and terms apply – which you can review here: https://www.intel.com/content/www/us/en/support/articles/000024255/processors.html.

For users who are or have previously experienced instability symptoms on their Intel Core 13th/14th Gen Desktop processors and need to initiate the exchange process:
  • Boxed Processors – please contact Intel Customer Support for further assistance.
  • Tray Processors – please contact your place of purchase for further assistance.
  • OEM/System Integrator Intel Core 13th/14th Gen-powered desktop system – please contact your system manufacturer for further assistance.
If customers have experienced these instability symptoms on their 13th and/or 14th Gen desktop processors but were unsuccessful in prior RMAs we ask that they reach out to Intel Customer Support for further assistance and remediation.

We appreciate your patience with this process and will continue to share updates relating to the Intel Core 13th/14th Gen desktop processor instability issue.
-Intel Community Post (08/05/2024)

Additional Details on Via Oxidation Issue

Separately, Intel’s community team also posted a brief update on the via oxidation issue that, although distinct from the current Raptor Lake instability issues, came into question at roughly the same time. Intel has previously stated that that issue is unconnected to the ongoing stability issues, and was fixed back in 2023. And this latest update offers a few more details on just what that manufacturing issue entailed.

The Via Oxidation issue currently reported in the press is a minor one that was addressed with manufacturing improvements and screens in early 2023.

The issue was identified in late 2022, and with the manufacturing improvements and additional screens implemented Intel was able to confirm full removal of impacted processors in our supply chain by early 2024. However, on-shelf inventory may have persisted into early 2024 as a result.

Minor manufacturing issues are an inescapable fact with all silicon products. Intel continuously works with customers to troubleshoot and remediate product failure reports and provides public communications on product issues when the customer risk exceeds Intel quality control thresholds.
-Intel Community Post

Update: Intel Accelerated Ireland EUV Fab Ramp-Up as Meteor Lake Chips Were In Short Supply

2 août 2024 à 00:15

Update 08/02: Patrick Moorhead has published a further tweet, clarifying that "Pat [Gelsinger] didn’t tell me l that there were yield issues. This was *my* interpretation." The text of the article has been updated accordingly to reflect this tweet, as well as Intel statements about accelerating their Ireland Fab 34 ramp-up.


Alongside Intel’s weak Q2 2024 earnings report and the announcement of $10 billion in spending cuts and layoffs for 2025, the company is also disclosing some new information about their chip deliveries over the first half of the year. A brief report, posted on X by analyst Patrick Moorhead and citing a conversation with Intel CEO Pat Gelsinger, revealed that Intel encountered a major production bottleneck on Meteor Lake earlier this year. The issue was significant enough to drive intel to take the extraordinary and costly step of accelerating their Ireland fab ramp-up in order to improve chip capacity.

It was a very rough Q2 for $INTC. And that guide... Thanks, @Pgelsinger, for the time to discuss.

It appears that there were yield/throughput issues on Meteor Lake, negatively impacting gross margins. When you have to get the product to your customers, and you have wafers to… pic.twitter.com/pHU66xvFe7

— Patrick Moorhead (@PatrickMoorhead) August 1, 2024
It appears that there were yield/throughput issues on Meteor Lake, negatively impacting gross margins. When you have to get the product to your customers, and you have wafers to burn, you run it hot. I heard from OEMs that they needed more MTL, but it wasn't bone dry. You have to run hot lots in that case, or else your customers will be impacted. I didn't have this one on my dance card.
-Patrick Moorhead

In a separate tweet posted several hours later, Moorhead then clarified that the yield issues mentioned in his first tweet were his interpretation of the matter, rather than something Pat Gelsinger had told him directly.

For the record, Pat didn’t tell me l that there were yield issues. This was *my* interpretation. But when your COGS are cited for a specific product are rising in a big, big way, with MTL, you *have* to surmise either yield or back end throughout issues that can be very expensive.
-Patrick Moorhead

Decoding Moorhead’s dense tweets, fundamentally, Moorhead is questioning why Intel's Cost of Goods Sold (COGS) – how much the company's chips cost to produce – were on the rise with the launch of Meteor Lake.  The analyst surmised that yields and/or some other unexpected production bottleneck must be the case, as these are the typical issues that drive up chip COGS on a short-term basis like Intel has been experiencing.

And, judging from Intel's earnings call that took place after the initial tweet, Moorhead was right to an extent. Referencing the increased COGS, Intel CFO David Zinsner noted that Intel opted to ramp up its high-volume production in Ireland faster than initially planned. This increased Intel's capacity for Intel 4 (and Intel 3) capacity, but doing so also increased their costs, as wafers out of Ireland cost more in the near term.

The largest impact was caused by an accelerated ramp of our AI PC product. In addition to exceeding expectations on Q2 Core Ultra shipments, we made the decision to accelerate transition of Intel 4 and 3 wafers from our development fab in Oregon to our high volume facility in Ireland, where wafer costs are higher in the near term.
-Intel CFO David Zinsner (Intel Q2'24 Earnings Call)

Between Moorhead's report that OEMs have been receiving fewer Meteor Lake chips than they could use, and Intel's announcement that they accelerated the Ireland fab ramp-up, this is the first significant disclosure that Meteor Lake chips were, at least at some point, in unexpectedly short supply. Which in turn required Intel to take unexpected and extraordinary steps in order to improve chip production, at the cost of lower short-term profit margins and higher COGS.

The first of Intel's high-volume manufacturing (HVM) fabs to be equipped for the Intel 4 and Intel 3 processes, Fab 34 in Ireland is a critical element to Intel's cutting-edge product plans over the next couple years. Intel was not initially planning on relying so much on Fab 34 this soon – instead using their Oregon development fabs to do more of their Intel 4 & Intel 3 fabrication – but the company opted to ramp up at a faster pace. The benefit to Intel is that they get more fab capacity sooner, but it means they're incurring around $1 billion in costs now of what would have otherwise been spread out over further quarters during a more gradual ramp-up.

The net result was that, while Intel took a margin hit, it also allowed them to supply more Meteor Lake chips than they otherwise would have, even beating their own previous projections for Q2 shipments. Overall, Intel reported in their Q2 earnings that they’ve shipped 15 million “AI PC” chips since Meteor Lake’s launch, though the company doesn't break down how many of those were in Q2 versus Q1 and Q4'23. Still, according to Moorhead, this was fewer chips than OEMs would have liked to have, and they would have taken more chips if they were available.

COGS and Ireland ramp-ups aside, Moorhead also posits that some of Intel's capacity boost came from running “hot lots” of Meteor Lake – high priority wafer batches that get moved to the front of the line in order to be processed as soon as possible (or as reasonably close as is practical). Hot lots are typically used to get highly-demanded chips produced quickly, getting them through a fab sooner than the normal process would take. As a business tool, hot lots are a fact of life of chip production, but they’re undesirable because in most cases they cause disruptions to other wafers that are waiting their turn to be processed.

If true, running hot lots of Meteor Lake would be a significant development given the potential disruptions. At the same time, however, the situation with Meteor Lake is somewhat particular, as the Intel 4 process used for Meteor Lake’s compute tile (the only active tile made at Intel) is not offered to external foundry customers, or even used by other Intel CPUs (Xeon 6s all use Intel 3). So hot lots of Meteor Lake would have few other wafers to even jump ahead of for EUV tooling (Intel would certainly not put them ahead of high-margin Xeon products), while it's unclear how this would cascade down to any tools shared with Intel 7.

Intel, for their part, did not comment on Meteor Lake chip yields or hot lots in their earnings call.

In any case, Intel at this point is looking to turn around their troubled fortunes in the second half of this year. The company’s next-gen client SoC for mobile, Lunar Lake, is set to launch on September 3rd. And notably, both of its active tiles are being built by TSMC. So Lunar Lake would be spared from any Intel logic fab bottlenecks, though it still has to go through Intel’s facilities for assembly using their Foveros technology. And there remains the thorny issue of higher production costs altogether, since Intel is paying for what's effectively the fully outsourced production of a Core CPU.

Intel Bleeds Red, Plans 15% Workforce Layoff and $10B Cuts For 2025

1 août 2024 à 23:15

Amidst the backdrop of a weak quarterly earnings report that saw Intel lose money for the second quarter in a row, Intel today has announced that the company will be cutting costs by $10 billion in 2025 in an effort to bring Intel back to profitability. The cuts will touch almost every corner of the company in some fashion, with Intel planning to cut spending on R&D, marketing, administration, and capital expenditures. The most significant of these savings will come from a planned 15% reduction in force, which will see Intel lay off 15,000 employees over the next several months – thought to be one of Intel’s biggest layoffs ever.

In an email to Intel’s staff, which was simultaneously published to Intel’s website, company CEO Pat Gelsinger made the financial stakes clear: Intel is spending an unsustainable amount of money for their current revenues. Citing the company’s current costs, Gelsinger wrote that “our costs are too high, our margins are too low,“ and that “our annual revenue in 2020 was about $24 billion higher than it was last year, yet our current workforce is actually 10% larger now than it was then.” Consequently, Intel will be enacting a series of painful cuts to bring the company back to profitability.

Intel is not publicly disclosing precisely where those cuts will come from, but in the company’s quarterly earnings release, the company noted that it was targeting operating expenses, capital expenditures, and costs of sales alike.

For operating expenses, Intel will be cutting “non-GAAP R&D and marketing, general and administrative” spending, with a goal to trim that from $20 billion in 2024 to $17.5 billion in 2025. Meanwhile gross capital expenditures, a significant expense for Intel in recent years as the company has built up its fab network, are projected to drop from $25 billion to $27 billion for 2024, to somewhere between $20 billion and $23 billion in 2025. Compared to Intel’s previous plans for capital expenditures, this would reduce those costs by around 20%. And finally, the company is expecting to save $1 billion on the cost of sales in 2025.

Intel 2025 Spending Cuts
  2024 Projected Spending 2025 Projected Spending Projected Reduction
Operating Expenses
(R&D, Marketing, General, & Admin)
$20B $17.5B $2.5B
Capital Expenditures (Gross) $25B - $27B $20B - $23B $2B - $7B
Cost of Sales N/A $1B Savings $1B

Separately, in Intel’s email to its employees, Gelsinger outlined that these cuts will also require simplifying Intel’s product portfolio, as well as the company itself. The six key priorities for Intel will include cutting underperforming product lines, and cutting back Intel’s investment in new products to “fewer, more impactful projects”. Meanwhile on the administrative side of efforts, Intel is looking to eliminate redundancies and overlap there, as well as stopping non-essential work.

  • Reducing Operational Costs: We will drive companywide operational and cost efficiencies, including the cost savings and head count reductions mentioned above.
  • Simplifying Our Portfolio: We will complete actions this month to simplify our businesses. Each business unit is conducting a portfolio review and identifying underperforming products. We are also integrating key software assets into our business units so we accelerate our shift to systems-based solutions. And we will narrow our incubation focus on fewer, more impactful projects.
  • Eliminating Complexity: We will reduce layers, eliminate overlapping areas of responsibility, stop non-essential work, and foster a culture of greater ownership and accountability. For example, we will consolidate Customer Success into the Sales, Marketing and Communications Group to streamline our go-to-market motions.
  • Reducing Capital and Other Costs: With the completion of our historic five-nodes-in-four-years roadmap clearly in sight, we will review all active projects and equipment so we begin to shift our focus toward capital efficiency and more normalized spending levels. This will reduce our 2024 capital expenditures by more than 20%, and we plan to reduce our non-variable cost of goods sold by roughly $1 billion in 2025.
  • Suspending Our Dividend: We will suspend our stock dividend beginning next quarter to prioritize investments in the business and drive more sustained profitability.
  • Maintaining Growth Investments: Our IDM2.0 strategy is unchanged. Having fought hard to reestablish our innovation engine, we will maintain the key investments in our process technology and core product leadership.

The bulk of these cuts, in turn, will eventually come down to layoffs. As previously noted, Intel is planning to cut about 15% of its workforce. Just how many layoffs this will entail remains to be seen; Gelsinger’s letter puts it at roughly 15,000 employees, while Intel’s most recent published headcount would put this figure at closer to 17,000 employees.

Whatever the number, Intel is expecting to have most of the reductions completed by the end of this year. The company will be using a combination of early retirement packages and buy-outs, or what the company terms as “an application program for voluntary departures.”

Intel’s investors will be taking a hit, as well. The company’s generous quarterly dividend, a long-time staple of the chipmarker and one of the key tools to entice long-term investors, will be suspended starting in Q4 of 2024. With Intel losing money over multiple quarters, Intel cannot afford (or at least, cannot justify) paying out cash in the forms of dividends when that money could be getting invested in the company itself. Though as the long-term health of the company is still reliant on offering dividends, Intel says that the suspension will be temporary, as the company reiterated its “long-term commitment to a competitive dividend as cash flows improve to sustainably higher levels.” For Q2 2024, Intel paid out $0.125/share in dividends, or a total of roughly $0.5B.

Ultimately, the message coming from Intel today is that it is continuing (if not accelerating) its plans to slim down the company; to focus on a few areas of core competencies that suit the company’s abilities and its financial goals. Intel is throwing everything behind its IDM 2.0 initiative to regain process leadership and serve as a world-class contract foundry, and even with Intel’s planned spending cuts for 2025, that initiative will continue to move forward as planned.

On that note, cheering up investors in what’s otherwise a brutal report from the company, Intel revealed that they’ve achieved another set of key milestones with their in-development 18A process. The company released the 1.0 process design kit (PDK) to customers last month, and Intel has successfully powered-on their first Panther Lake and Clearwater Forest chips. 18A remains on track to be “manufacturing-ready” by the end of this year, with Intel looking to start wafer production in the first half of 2025. 18A remains a make-or-break technology for Intel Foundry, and the company as a whole, as this is the node that Intel expects to return them to process leadership – and from which they can improve upon to continue that leadership.

Sources: Intel Q2'24 Earnings, Intel Staff Letter

Best Buy Briefly Lists AMD's Ryzen 9000 CPUs: From $279 to $599

31 juillet 2024 à 22:00

Although AMD delayed launch of its Ryzen 9000-series processors based on the Zen 5 microarchitecture from July 31, to early and mid-August, the company's partner (and major US retailer) Best Buy briefly began listing the new CPUs today, revealing a very plausible set of launch prices. As per the retailer's product catalog, the most affordable unlocked Zen 5-based processor will cost $279, whereas the highest-performing Zen 5-powered CPU will cost $599 at launch.

AMD will start its Ryzen 9000 series rollout from relatively inexpensive six-core Ryzen 5 9600X and eight-core Ryzen 7 9700X on August 8. Per the Best Buy listing, the Ryzen 5 9600X will cost $279, whereas the Ryzen 7 9700X will carry a recommended price tag of $359.  Meanwhile, The more advanced 12-core Ryzen 9 9900X and 16-core Ryzen 9 9950X will hit the market on August 15 at MSRPs of $449 and $599, respectively, based on the Best Buy listing.

AMD Ryzen 9000 Series Processors
Zen 5 Microarchitecture (Granite Ridge)
AnandTech Cores /
Threads
Base
Freq
Turbo
Freq
L2
Cache
L3
Cache
TDP MSRP
Ryzen 9 9950X 16C / 32T 4.3GHz 5.7GHz 16 MB 64 MB 170 W $599
Ryzen 9 9900X 12C / 24T 4.4GHz 5.6GHz 12 MB 64 MB 120 W $449
Ryzen 7 9700X 8C / 16T 3.8GHz 5.5GHz 8 MB 32 MB 65 W $359
Ryzen 5 9600X 6C / 12T 3.9GHz 5.4GHz 6 MB 32 MB 65 W $279

It is noteworthy that when compared to the launch prices of the Zen 4-based Ryzen 7000 processors, the new Zen 5-powered Ryzen 9000 CPUs come in cheaper. The range topping Ryzen 9 5950X started at $799 in 2020, while the Ryzen 9 7950X had a recommended $699 price tag in 2022. By contrast, the top-end Ryzen 9 9950X is listed at $599. Both Ryzen 7 5600X and Ryzen 7 7600X cost $299 at launch, while the upcoming Ryzen 5 9600X will apparently be priced at $279 at launch.

As always with accidental retailer listings, it should be emphasized that AMD has not yet announced official pricing for their Ryzen 9000 CPUs. Given Best Buy's status as one of the largest US electronics retailers, these prices carry a very high probability of being accurate; but none the less, they should be taken with a grain of salt – if only because last-minute price changes are not unheard of with new CPU launches.

Source: Best Buy (via @momomo_us)

Intel to Launch "Lunar Lake" Core Ultra Chips on September 3rd

31 juillet 2024 à 12:00

Intel’s next-generation Core Ultra laptop chips finally have a launch date: September 3rd.

Codenamed Lunar Lake, Intel has been touting the chips for nearly a year now. Most recently, Intel offered the press a deep dive briefing on the chips and their underlying architectures at Computex back in June, along with a public preview during the company’s Computex keynote. At the time Intel was preparing for Q3’2024 launch, and that window has finally been narrowed down to a single date – September 3rd – when Intel will be hosting their Lunar Lake launch event ahead of IFA.

Intel’s second stab at a high volume chiplet-based processor for laptop users, Lunar Lake is aimed particularly at ultrabooks and other low-power mobile devices, with Intel looking to wrestle back the title of the most efficient PC laptop SoC. Lunar Lake is significant in this respect as Intel has never previously developed a whole chip architecture specifically for low power mobile devices before – it’s always been a scaled-down version of a wider-range architecture, such as the current Meteor Lake (Core Ultra 100 series). Consequently, Intel has been touting that they’ve made some serious efficiency advancements with their highly targeted chip, which they believe will vault them over the competition.

All told, Lunar Lake is slated to bring a significant series of updates to Intel’s chip architectures and chip design strategies. Of particular interest is the switch to on-package LPDDR5X memory, which is a first for a high-volume Core chip. As well, Lunar Lake incorporates updated versions of virtually every one of Intel’s architecture, from the CPU P and E cores – Lion Cove and Skymont respectively – to the Xe2 GPU and 4th generation NPU (aptly named NPU 4). And, in a scandalous twist, both of the chiplets/tiles on the CPU are being made by TSMC. Intel isn’t providing any of the active silicon for the chip – though they are providing the Foveros packaging needed to put it together.

Intel CPU Architecture Generations
  Alder/Raptor Lake Meteor
Lake
Lunar
Lake
Arrow
Lake
Panther
Lake
P-Core Architecture Golden Cove/
Raptor Cove
Redwood Cove Lion Cove Lion Cove Cougar Cove?
E-Core Architecture Gracemont Crestmont Skymont Crestmont? Darkmont?
GPU Architecture Xe-LP Xe-LPG Xe2 Xe2? ?
NPU Architecture N/A NPU 3720 NPU 4 ? ?
Active Tiles 1 (Monolithic) 4 2 4? ?
Manufacturing Processes Intel 7 Intel 4 + TSMC N6 + TSMC N5 TSMC N3B + TSMC N6 Intel 20A + More Intel 18A
Segment Mobile + Desktop Mobile LP Mobile HP Mobile + Desktop Mobile?
Release Date (OEM) Q4'2021 Q4'2023 Q3'2024 Q4'2024 2025

Suffice it to say, no matter what happens, Lunar Lake and the Core Ultra 200 series should prove to be an interesting launch.

It’s worth noting, however, that while Intel’s announcement of their livestreamed event is being labeled a “launch event” by the company, the brief reveal doesn’t make any claims about on-the-shelves availability. September 3rd is a Tuesday (and the day after a US holiday), which isn’t a typical launch date for new laptops (for reference, the lightly stocked Meteor Lake launch was a Thursday). So Intel’s launch event may prove to be more of a soft launch for Lunar Lake; we’ll have to see how things pan out in the coming weeks.

❌
❌