Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

Comment ce navire cargo traverse l’Atlantique sans émettre de gaz à effet de serre

23 avril 2024 à 15:17

Le transport de marchandises à la voile connaît un vif regain d’intérêt du fait des enjeux environnementaux, et on ne compte plus le nombre de projets en cours de développement. Pour ce faire, à son échelle et à son rythme, la jeune société française Grain de Sail a inventé son propre concept de voilier cargo ultra-sobre en énergie. Nous avons interrogé ses fondateurs pour découvrir cette surprenante aventure.

Grain de Sail est née en 2012, à Morlaix en Bretagne. La société est fondée par deux frères jumeaux, Olivier et Jacques Barreau, dont l’ambition est simple : transporter des marchandises à travers l’Atlantique sans émissions de CO2. Dans cette optique, ils n’ont pas seulement mis au point le premier voilier cargo moderne, mais ont conçu un ensemble cohérent entre le moyen de transport, les produits transportés et le marché qu’ils adressent. Un système en somme, dont chaque composante fonctionne bien l’une avec l’autre.

« Consommer moins, consommer mieux, transporter moins, transporter mieux » est le motto chez Grain de Sail. Dans un contexte mondial tendant vers la relocalisation, ils ont visé le marché du transport de produits qu’il ne serait pas raisonnable de produire localement. Mais aussi les produits dont il serait difficile de se passer. En effet, loin d’une notion de sobriété triste, Grain de Sail promeut une sobriété qui ne s’affranchit pas de la notion de plaisir. Aussi leurs choix principaux : le café, le chocolat et le vin.

À lire aussi Cette compagnie veut concurrencer l’avion avec une flotte de voiliers

Grain de Sail démarre à petits pas

En 2013, Grain de Sail ouvre à Morlaix un atelier de torréfaction du café, puis, en 2016, une chocolaterie. Leurs produits se vendent bien, ils sont disponibles dans plusieurs centaines de points de vente, de sorte qu’il devient possible pour la petite société de financer son premier projet de voilier cargo.

La société a appliqué un schéma rationnel de conception : commencer petit, par un démonstrateur. « Lorsqu’on construit quelque chose de disruptif, on commence par un démonstrateur pour gérer les inévitables perfectionnements qui seront à apporter », nous dit Olivier Barreau. Le Grain de Sail I sort du chantier naval en novembre 2020. Conduit par un équipage de 4 marins, le voilier mesure 22 m, et il peut emporter 50 tonnes en cale. Il a été certifié Marine Marchande, les normes du transport maritime moderne.

Depuis 2020, le navire effectue chaque année 2 boucles transatlantiques, une au printemps et une à l’automne. Chaque voyage dure environ 3 mois. Cette exploitation réussie a permis à la société de se familiariser avec les contraintes spécifiques du transport cargo vélique, et de concevoir sur de bonnes bases un navire de plus grande taille.

Le Grain de Sail II en mer et le Grain de Sail I arrivant à New-York / Images : GDS.

Comment concevoir un bateau « basse consommation » ?

Le Grain de Sail II mesure 52 m, et il peut emporter dans ses quatre cales 300 palettes européennes pour un poids maximal de 350 t. Propulsé par le vent, il ne fait appel à son moteur diesel de 450 kW uniquement lors des manœuvres portuaires. Et le Grain de Sail II a été conçu pour consommer aussi peu d’énergie que possible. « C’est un navire passif, tout comme les maisons passives ! » nous dit Olivier Barreau. Pour consommer moins d’énergie à bord d’un navire, il faut transformer deux postes principaux : d’une part, l’énergie nécessaire à la propulsion, et d’autre part l’énergie nécessaire pour subvenir aux besoins du navire et de l’équipage. Et pour parvenir à éliminer le CO2 sur ces deux postes, il est nécessaire de faire preuve d’une grande subtilité.

Concernant la propulsion, les voiles constituent une solution évidente, mais le sujet est plus complexe qu’il n’y paraît. En effet, pour garantir une vitesse optimale, il est nécessaire de proportionner la surface de voiles à la masse du navire, ce qui est une autre manière de parler d’une optimisation poids / puissance. Or la surface des voiles ne peut être arbitrairement grande. « Pour concevoir un pur voilier, il y a une masse maximale qu’il n’est pas possible de dépasser. Cela est dû à la hauteur maximale des mâts qu’il est possible de construire. Pour le Grain de Sail II, nous avons 1 500 m2 de surface de voile. Nous avons établi les dimensions du navire au maximum qu’il est possible d’atteindre pour un pur voilier. »

Pour pouvoir se déplacer par tout temps, le bateau est en outre doté de voiles sur lesquelles il est possible de prendre des ris, c’est-à-dire dont il est possible de réduire la surface lorsque le vent souffle fort. Ainsi le Grain de Sail II peut naviguer jusqu’à 80 nœuds de vent (148 km/h). En outre, la navigation bénéficie des dernières avancées en termes de prévision météorologique et d’optimisation du trajet. Car, dans l’Atlantique, il y a toujours du vent quelque part, et il s’agit de trouver le meilleur chemin. « Naviguer à la voile, cela ne signifie pas se priver de technologie » nous dit Olivier Barreau.

Schémas du cargo à propulsion vélique Grain de Sail II / Visuels : GDS.

Optimiser la production d’énergie

Outre la propulsion, un navire consomme de l’énergie pour ses équipements et pour les besoins de l’équipage. Pour produire cette énergie, le Grain de Sail II est notamment équipé de 5 kW de panneaux photovoltaïques, ainsi que de deux hydrogénérateurs sous la coque, de grande taille. Ces dispositifs utilisent la vitesse du navire pour produire de l’électricité, autrement dit, ils utilisent indirectement l’énergie du vent qui souffle sur les voiles. Ils développent en moyenne 10 kW de puissance, mais peuvent produire jusqu’à 30 kW en pic. Pour palier les fluctuations de production, l’énergie est stockée dans une batterie de 100 kWh, soit l’équivalent d’une batterie de grosse voiture électrique.

Les quartiers de l’équipage ont en outre été conçus comme un véritable bâtiment performant énergétiquement : isolation renforcée, ventilation double-flux, et, pour le chauffage, un véritable poêle à pellets de marque Ökofen. « Cette idée m’a réveillé la nuit ! » nous confie Olivier Barreau. Par ailleurs, les cales disposent de compartiments réfrigérés, également bien isolés, de façon à garantir la parfaite conservation pour les produits les plus fragiles : vins, bien sûr, mais également des produits cosmétiques, voire des produits mécaniques, qui pourraient ne pas supporter les rigueurs de la navigation en mer. « Nous avons construit la première cave à vin flottante ». Le système de réfrigération est alimenté par les hydroliennes et panneaux solaires.

Le Grain de Sail Il n’a besoin que de six marins pour réaliser le voyage, mais il peut accueillir jusqu’à 9 personnes. « Nous recrutons essentiellement des marins avec un profil Marine Marchande, que nous formons à la navigation à la voile. Deux marins sont formés à chaque trajet. » Olivier Barreau nous communique l’enthousiasme des membres d’équipage, car le navire est très plaisant à conduire. Nous retrouvons ici la notion de plaisir que nous avions évoquée plus haut. Si bien que Grain de Sail n’a aucune inquiétude quant au succès de ses recrutements futurs.

Quelles performances dans l’environnement très compétitif du transport maritime ?

Le Grain de Sail II fera environ cinq rotations par an entre la France et les États-Unis, mais aussi avec la Guadeloupe où la société dispose dorénavant d’un hub logistique. Car les ambitions de la société ne s’arrêtent pas là : le navire est destiné à être la tête de série d’une flotte de trois navires supplémentaires. Selon les cours du transport maritime, le transport par voile peut être plus coûteux que le transport par porte-container. « Pour nos produits, nous nous y retrouvons largement. Car ils transmettent non seulement notre conviction dans le transport écologique, mais également notre cohérence. Et les clients qui achètent notre café ou nos chocolats y sont très sensibles. Nos clients pour le transport sont également très investis dans la transition énergétique ».

Par ailleurs, le transport à voile n’est pas nécessairement plus lent que le transport à moteur. Non seulement le voilier peut se déplacer à une vitesse équivalente lorsque les conditions sont bonnes, mais en outre, du fait du format palette plutôt que conteneur, le navire bénéficie de moins de contraintes lors des opérations de chargement et de déchargement. « Aujourd’hui, les files d’attente devant les grands ports peuvent faire perdre jusqu’à une semaine aux porte-conteneurs ».

Quel gain en termes de CO2 ? « Le transport maritime émet en moyenne environ 20 g-CO2/t-km. Avec un porte-conteneur, du fait des économies d’échelle, ce chiffre descend à 6-7 g/t-km. Avec le Grain de Sail II, nous pouvons descendre à 1-2 g/t-km. » Un atout de poids au regard des objectifs de l’Organisation maritime internationale (OMI) qui vise la neutralité carbone en 2050. C’est le 15 mars 2024 qu’a commencé le voyage inaugural du Grain de Sail II. Le 7 avril, le navire est arrivé à New-York. Il s’est chargé de marchandises diverses : produits alimentaires secs, équipements industriels, maroquinerie, santé et cosmétique, vins et spiritueux. Et il vient de repartir pour Saint-Malo. Souhaitons-lui bon voyage.

À lire aussi Le premier cargo hybride fioul éolien au monde vient de prendre la mer

ℹ️ Cet article comporte un ou plusieurs liens d’affiliation, qui n’ont aucune influence sur la ligne éditoriale. C’est l’un des modes de financement de notre média qui nous permet de vous proposer gratuitement des articles de qualité.

L’article Comment ce navire cargo traverse l’Atlantique sans émettre de gaz à effet de serre est apparu en premier sur Révolution Énergétique.

Quelles lignes ferroviaires construire pour en finir avec les vols intérieurs en France ?

11 avril 2024 à 10:17

Grâce à son impact environnemental beaucoup plus faible, le train pourrait devenir, dans les années à venir, le choix le plus adapté pour voyager en France métropolitaine. Mais pour y parvenir, il y a encore du travail, car le réseau ferroviaire français est loin d’être parfait. Voici quelques pistes qui permettraient d’en faire le choix numéro un. 

Depuis de nombreuses années, le transport aérien et le transport ferroviaire se tirent la bourre pour s’accaparer le plus part de marché des trajets intérieurs en France métropolitaine. Pendant très longtemps, prendre le train pour voyager en France était une évidence. Mais à partir des années 90, la dérégulation du transport aérien a eu pour conséquence de rendre l’avion plus accessible, et de lancer une véritable guerre entre l’aérien et le ferroviaire en France.

Récemment, le ferroviaire est revenu sur le devant de la scène grâce au développement de son réseau à grande vitesse, et surtout à son impact environnemental beaucoup plus faible que celui de l’avion. Néanmoins, le réseau ferroviaire s’avère hétérogène et nécessite de nombreuses améliorations pour devenir la norme pour voyager dans le pays.

Le renforcement du réseau ferroviaire entre Paris et la province a porté ses fruits

Selon le ministère de l’Écologie, en 2001, 25 millions de passagers prenaient l’avion pour des vols intérieurs. La majorité de ces vols étaient réalisés entre Paris et les régions avec 19 millions de passagers. Mais depuis, notamment grâce à des travaux d’envergure, le train est devenu une alternative de plus en plus prisée pour ces trajets entre Paris et les régions. Ainsi, alors qu’en 2001 on comptait l’équivalent de 38 milliards de kilomètres-passagers réalisés par des trains à grande vitesse (ou plutôt aptes à la grande vitesse), ce chiffre est passé à 48,6 milliards de kilomètres passagers en 2021, et ce malgré la crise du COVID. Dans le même temps, le nombre de passagers à prendre l’avion entre Paris et les provinces a chuté à 12 millions de passagers en 2022.

Ce renforcement des trajets réalisés en train s’explique par le développement de nombreuses lignes à grandes vitesses. En 20 ans, on aura notamment assisté à la création de la ligne LGV Est-Europe reliant Paris à Strasbourg, ou encore de la LGV Sud-Europe-Atlantique, reliant Paris à Bordeaux.

Néanmoins, si le ferroviaire a gagné du terrain sur l’aérien concernant les liaisons entre Paris et les grandes villes régionales, la tendance s’est inversée pour les destinations transversales. En 2001, le transport aérien de région à région représentait seulement 5,8 millions de passagers, mais il est passé à 9 millions de passagers en 2022. Côté ferroviaire, si le trafic associé aux TER (Train Express Régionaux) a augmenté (de 8,7 milliards de kilomètres-passagers en 2001 à 14,7 milliards de kilomètres-passagers en 2021), le trafic des trains interurbains s’est littéralement effondré, passant de 15,3 milliards de kilomètres-passagers en 2001 à seulement 3,1 milliards de kilomètres-passagers en 2021.

Redynamiser les lignes ferroviaires transversales

Face à ce constat, il paraît évident que, pour renforcer l’attractivité du ferroviaire face à l’aérien en métropole, il est nécessaire d’améliorer les liaisons interrégionales à travers le pays. À ce sujet, la liaison Bordeaux-Lyon est un cas d’école. Les itinéraires historiques, passant autrefois par Clermont-Ferrand ou Limoges, ont été remplacés et/ou supprimés. Par conséquent, relier les deux villes nécessite un changement à Paris et près de 6 heures pour parcourir les 430 km qui séparent les deux villes à vol d’oiseau. Problème : ce même trajet, en avion, ne demande qu’une heure et dix petites minutes. Avec un tel écart, malgré un bilan écologique avantageux pour le train, on comprend le succès de la liaison aérienne. D’autant que les tarifs sont nettement plus attractifs pour l’avion que le train.

Et ce cas de figure n’est pas une exception. Il suffit de relever les lignes aériennes transversales (de province à province) les plus empruntées pour comprendre où sont les points faibles du réseau ferroviaire. Les trois premières places reviennent à Bordeaux-Lyon, Lyon-Nantes et Marseille-Nantes suivi de Marseille-Bordeaux. On pourra également citer Nantes-Toulouse qui demande 6 heures de train dans le meilleur des cas contre 1h10 en avion. Concernant les lignes radiales, Paris-Nice et Paris-Toulouse sont logiquement en tête, puisque ces deux villes de province sont fort mal reliées par le rail à la capitale.

Carte des lignes ferroviaires à réaliser pour concurrencer l’avion / Révolution Énergétique.

Dans ce contexte, la création d’une ligne à grande vitesse entre Bordeaux et Lyon aurait beaucoup de sens. Pour l’heure, seule une ligne LGV relie Lyon à Montpellier tandis qu’à l’ouest de la France, la ligne entre Bordeaux et Toulouse vient d’entrer en phase chantier. Une ligne entre Toulouse et Narbonne est également en projet, mais non programmée. Toujours pour limiter la durée des lignes transversales, relier Nantes et Rennes au sud de la France via la LGV Aquitaine permettrait d’éviter les correspondances à Paris et ainsi limiter la durée des trajets en train entre Nantes, Rennes, Bordeaux, Toulouse, Marseille et même Lyon.

Schéma directeur national des liaisons ferroviaires à grande vitesse

Le réseau des lignes à grande vitesse actuelle avait, en partie, été prévu par le schéma directeur national des liaisons ferroviaires à grande vitesse. Publié par décret en 1992, ce document prévoit de manière ambitieuse plus de 4 700 km de voies ferrées à grande vitesse sur l’ensemble du territoire, y compris des liaisons transversales entre Bordeaux, Toulouse, Montpellier et Marseille. Malgré l’ambition de départ, plusieurs événements viendront freiner considérablement le développement du réseau LGV. Parmi ces évènements, on peut citer le fait qu’à partir du début des années 90, la SNCF, ayant fait des investissements financiers considérables en lançant la construction de plusieurs lignes en simultané, ne peut plus investir seule pour la construction de nouvelles lignes. L’État devra donc participer au financement des lignes. Dans le même temps, la dérégulation du transport aérien intérieur entraîne une chute des prix des billets d’avions. Pour faire face à cette concurrence nouvelle, la SNCF baisse, elle aussi, ses tarifs. Néanmoins, cette guerre des prix aura pour conséquence de réduire l’excédent brut d’exploitation de la SNCF, affectant ainsi les capacités d’investissement de cette dernière qui se doit de maintenir en état tout son réseau, y compris les lignes non rentables. Aujourd’hui, le réseau LGV s’étend sur 2800 km.

Pour résoudre ces mêmes problématiques de liaisons transversales, un autre projet a été imaginé au début des années 2000. Appelée T3A ou Transversale Alpes Auvergne Atlantique, cette liaison à travers le Massif-Central, permettrait d’assurer des liaisons de base suivantes : Lyon-Bordeaux, Lyon-Nantes et Bordeaux-Nantes. Cette grande transversale à travers le pays continue d’être étudiée par l’association ALTRO (Association logistique transport Ouest). Ce projet suscite cependant des interrogations, notamment en termes de rentabilité. La traversée complexe du Massif Central pourrait entraîner des coûts de construction disproportionnés par rapport au trafic potentiel.

Relancer les trains de nuit, et augmenter le nombre de rames

Outre le développement des lignes à grande vitesse, et en particulier des lignes transversales, le train reste, sur de longues distances, invariablement plus lent que l’avion. Face à ce constat, la remise au goût du jour des liaisons de nuit pourrait être une solution pour contourner cette limite physique. Les trains de nuit ont été populaires dès la démocratisation du train jusqu’à la fin des années 80. À cette époque, de nombreux trains « lents » circulaient la nuit un peu partout à travers la France. On en trouvait même sur des lignes courtes, comme entre Paris et Rennes ou Nantes. Sur ces lignes, les trains restaient plusieurs heures en gare, pour permettre à ses passagers de faire une nuit complète. Relancer les trains de nuit à des tarifs attractifs permettrait d’offrir une véritable alternative à l’avion pour les trajets sur de longues distances.

Enfin, pour que le train soit définitivement privilégié face à l’avion, il faut tout simplement… qu’il y en ait plus ! L’année 2023 a été marquée par une hausse de la fréquentation des trains, qu’il s’agisse des TGV ou même des TER. Néanmoins, la SNCF a été confrontée à des problèmes de saturation. À l’heure actuelle, elle ne dispose que de 364 rames, soit une centaine de moins qu’il y a dix ans. Heureusement, à partir de 2025, Alstom devrait commencer à livrer les premières rames du TGV-M.

À lire aussi Pourquoi le train français est le plus propre des moyens de transport ?

La nécessité d’une volonté politique forte

Si l’attractivité du train s’est améliorée ces dernières années, augmenter encore l’attractivité du train au détriment de l’avion ne pourra se faire sans une volonté politique forte. En effet, la mise en place de nouvelles lignes ferroviaires nécessite des investissements très importants, et une planification sur le long terme. À titre d’exemple, le premier débat public pour la ligne LGV Aquitaine (entre Saint Pierre-des-Corps et Bordeaux) a eu lieu entre 1994 et 1995 pour une mise en service le 28 février 2017. Au total, cette ligne de 302 km aura coûté 7,8 milliards d’euros.

L’article Quelles lignes ferroviaires construire pour en finir avec les vols intérieurs en France ? est apparu en premier sur Révolution Énergétique.

Pourquoi ce train de banlieue a des grille-pains géants sur son toit ?

3 avril 2024 à 14:35

À bord d’un train, une voiture ou tout engin utilisant un moteur électrique pour se mouvoir, le « freinage régénératif » permet de produire de l’électricité lors des décélérations. Pourtant, ce système n’est pas toujours exploité à bon escient, faute de pouvoir stocker ou exporter l’énergie générée. La preuve en images, avec ce train de banlieue contraint de gaspiller l’énergie de son système de freinage dans des résistances électriques.

Le freinage régénératif. La technique est aujourd’hui dans toutes les voitures électriques ou hybrides, et même certains trains et métros. L’idée ? Recycler l’énergie traditionnellement perdue lors d’un ralentissement ou d’un freinage, en électricité renvoyée vers la batterie de la voiture, ou dans la caténaire pour les trains. Comment ? Grâce au moteur électrique, qui peut, par nature, fonctionner dans les deux sens. Pour faire tourner les roues lorsqu’on accélère, ou pour générer de l’électricité lorsqu’on appuie sur le frein. Une fonction loin d’être gadget. Sur Instagram, @tipkhimki partage ainsi une vidéo édifiante à ce sujet. Pour comprendre, quelques explications.

Rekuperieren ist für Anfänger… pic.twitter.com/h4GqT7FGRK

— Marc Aeschlimann 🐦 (@the_aeschli) February 9, 2024

« La récupération, c’est pour les débutants » titre ce post X.

La longue histoire du freinage régénératif des trains

Notez d’abord que le freinage régénératif est utilisé sur les trains depuis très longtemps. En Suisse, le premier du genre a été mis en service dès 1898 ! Il faut dire que le relief du pays s’y prête particulièrement bien. Ainsi, pour monter de Zermatt au Gornergrat, ce train compte sur l’électricité qu’il tire d’une caténaire. Mais lorsqu’il descend, ce train produit de l’énergie qui peut être utilisée par un autre circulant sur la même ligne ou directement injectée dans le réseau.

En Espagne, c’est l’énergie cinétique produite par le freinage à l’entrée en gare qui est récupérée et transformée en une électricité qui alimente les trains au redémarrage. Et parce qu’il se produit localement plus d’électricité qu’il ne s’en consomme, il pourrait être possible de coupler le système avec des bornes de recharge pour véhicules électriques placées aux abords des gares. Ou des stations de métro.

La SNCF étudie, elle aussi, plusieurs options. Le stockage de l’électricité produite dans des batteries disposées le long des voies. Ou le stockage directement à bord des trains. De quoi aider à transformer les locomotives thermiques en locomotives hybrides puis 100 % électriques. L’injection sur le réseau est aussi envisagée. Le plus direct restant l’injection sur la ligne par la caténaire pour alimenter les trains qui, eux, accélèrent au moment où un autre freine. L’ennui, c’est que s’il n’y a pas assez de trains pour utiliser cette électricité, l’excédent est évacué sous forme de chaleur dans des résistances. Enfin, certaines caténaires ne sont tout simplement pas conçues pour recevoir le courant du freinage régénératif.

À lire aussi Pourquoi le train à hydrogène n’intéresse plus l’Allemagne ?

Le freinage régénératif fait chauffer les résistances

C’est ce que montre la vidéo ci-dessus. Les résistances placées sur le toit d’une rame « Ivolga » circulant dans la banlieue de Moscou sont en pleine action. Elles dissipent l’énorme quantité d’énergie produite lors du freinage du train D’autant qu’il semblerait qu’il n’existait pour lui aucun débouché à l’énergie produite par le freinage régénératif. Pas de possibilité d’injection sur la ligne ou le réseau par la caténaire. Pas non plus de batterie embarquée. Résultat, beaucoup d’énergie perdue, à chaque freinage et décélération.

L’article Pourquoi ce train de banlieue a des grille-pains géants sur son toit ? est apparu en premier sur Révolution Énergétique.

Panneaux solaires ou champs de betteraves : qui est le plus efficace pour alimenter les voitures « propres » ?

30 mars 2024 à 05:57

La réduction de notre dépendance aux combustibles fossiles passe obligatoirement par la transformation de notre parc de véhicules automobiles. Hydrogène, électrique « pur », bioéthanol, biogaz : les solutions sont nombreuses, mais il est complexe de déterminer laquelle est la meilleure pour l’environnement. Une des manières de le savoir est d’évaluer la surface de terrain nécessaire pour les fournir en énergie. Dans cet article, nous évaluons qui d’une voiture électrique alimentée au photovoltaïque ou d’une voiture au superéthanol issu de betteraves, occupe le moins d’espace.

Imaginons que vous ayez hérité d’une parcelle d’un hectare (ha) et que vous souhaitez utiliser cette surface pour alimenter votre voiture personnelle, sans utiliser de combustible fossile, c’est-à-dire du diesel ou de l’essence. Une première possibilité pourrait être d’y cultiver des betteraves et de produire grâce à elles un agrocarburant pour le réservoir de votre voiture thermique, comme le superéthanol (E85). Une alternative pourrait être d’installer une centrale photovoltaïque sur ce terrain, pour recharger la batterie de votre voiture électrique. Quelle solution vous apporterait le plus d’autonomie pour votre véhicule ? Répondre à cette question, c’est connaître quel est le meilleur usage du sol qui peut en être fait.

Première option : la voiture au superéthanol

Il serait possible d’utiliser votre parcelle pour produire des betteraves sucrières. En France, il s’agit de la première culture industrielle, et elle est destinée principalement à la production de sucre. Pour l’anecdote, cette tradition n’est pas sans rapport avec nos préoccupations de production énergétique locale. En effet, la culture de la betterave sucrière s’est développée en France au XIXᵉ siècle, sous l’impulsion de Napoléon, dans l’objectif de faire face au blocus de la Grande-Bretagne sur les importations de sucre de canne. Les betteraves sont aujourd’hui essentiellement cultivées au nord de la Loire, notamment dans le Nord, le Nord-Est, en Île-de-France, en Normandie et dans le Centre.

Les sucres de la betterave peuvent être transformés en éthanol, et cet éthanol peut se substituer à l’essence dans un moteur thermique. La plupart des véhicules peuvent fonctionner de manière ordinaire avec 5 à 10 % d’éthanol (carburant dit « E10 »). Par ailleurs, il existe de plus en plus de véhicules susceptibles de fonctionner jusqu’à 85 % d’éthanol (E85, véhicules dits « FlexFuel ») de série ou après adaptation. Enfin, si en théorie un véhicule peut fonctionner à 100 % d’éthanol, cela n’est pas recommandé par les constructeurs.

Mais partons sur cette idée. Il faut savoir que l’éthanol contient moins d’énergie par litre que l’essence. Ainsi, un véhicule qui consommerait 7,5 L/100 km en essence, aurait besoin d’environ 11 L/100 km d’éthanol. Par ailleurs, un hectare de terrain mis en culture de betterave est susceptible de produire, selon les estimations, de 6 000 à 9 000 L de bioéthanol par an. Avec la production de votre parcelle de 1 hectare, vous seriez ainsi capable de rouler environ 70 000 km, soit environ 7 fois plus que le parcours annuel moyen d’une voiture particulière en France. Vous pourriez donc même en céder à vos voisins.

À lire aussi Combien de centrales faut-il construire pour électrifier toutes les voitures de France ?

Deuxième option : la voiture électrique

Dans l’alternative, vous pourriez installer sur votre terrain des panneaux photovoltaïques pour alimenter une voiture électrique. En moyenne, un tel véhicule consomme autour de 17 kWh/100 km. En France, on peut se fonder sur une puissance d’environ 400 kWc par hectare pour une centrale photovoltaïque au sol, dont on peut espérer une production entre 800 et 1 400 kWh par kWc et par an. En conséquence, votre terrain serait susceptible de produire environ 400 MWh/an, soit de quoi rouler environ 2 millions de km.

La voie électrique permet donc de produire l’énergie pour rouler environ 25 fois plus de distance que la voie agrocarburant, et ce, à partir de la même surface de terrain. Une autre manière de le voir serait de considérer que sur la parcelle de 1 hectare, vous pourriez consacrer 400 m2 à votre centrale photovoltaïque pour rouler 70 000 km/an. Le reste pourrait être laissé à la biodiversité, sous la forme d’une forêt ou d’un étang, par exemple.

Agrocarburants vs électrique : une affaire de rendements

La voiture électrique alimentée à l’énergie solaire est donc bien moins consommatrice d’espace qu’une voiture thermique alimentée par un agrocarburant produit à partir de betterave. Bien entendu, ce calcul est simplifié, il pourrait être critiqué et amélioré. La comparaison globale entre ces deux solutions est bien plus complexe que ce que nous avons exposé dans ce court article. En effet, pour pouvoir juger de l’impact environnemental, la totalité des conséquences néfastes (ou bénéfiques) sur l’environnement doivent être évalués.

Pour prendre quelques exemples, la culture de betterave, en mode intensif, nécessite des engrais (produits à partir de fossiles) et des pesticides, dont l’impact sur l’environnement peut être néfaste. Par ailleurs, la fabrication des panneaux photovoltaïque et de la batterie d’un véhicule électrique nécessite de l’énergie, et ils doivent être remplacés puis recyclés à la fin de leur cycle de vie. Cela peut être à l’origine de dégâts environnementaux, notamment lors de l’extraction des matières premières nécessaires à leur fabrication.

À lire aussi Pourquoi éolien et solaire ne sont pas une menace pour la production alimentaire

1 % de rendement pour la photosynthèse, jusqu’à 24 % pour le photovoltaïque

La différence est toutefois significative puisque nous trouvons environ un facteur 25. Et il existe une raison profonde qui permet d’expliquer ce résultat. Le rendement global de la photosynthèse est faible, de l’ordre de 1 % pour les plantes cultivées, tandis que le rendement des panneaux solaires commerciaux se situe entre 18 et 24 %. Les panneaux photovoltaïques sont donc plus de 20 fois plus efficaces que les plantes pour convertir l’énergie du soleil en une énergie utilisable par nos véhicules.

Et il y a une raison simple : le but de la vie n’est pas de produire de l’énergie. Les plantes produisent de l’énergie pour vivre, pour se reproduire, pour évoluer et pour se protéger des autres espèces vivantes. Elles ne sont donc pas optimisées pour le rendement énergétique, mais pour être en mesure de réaliser toutes ces activités, d’une manière indubitablement résiliente, comme nous l’a prouvé l’histoire mouvementée de la Terre et de la vie.

L’article Panneaux solaires ou champs de betteraves : qui est le plus efficace pour alimenter les voitures « propres » ? est apparu en premier sur Révolution Énergétique.

Guerre des batteries : les prix vont-ils poursuivre leur chute ?

15 mars 2024 à 15:16

Et si les voitures électriques devenaient enfin abordables grâce à un prix des batteries moins élevé ? Voilà maintenant plus d’un an que le prix de ces dernières ne cesse de baisser, et selon plusieurs observateurs, cette chute pourrait bien se poursuivre tout au long de l’année 2024.

L’année 2022 avait été marquée par une hausse importante du prix des batteries destinées au stockage d’électricité, la faute à une demande de plus en plus élevée. Heureusement, en 2023, la tendance s’est complètement inversée avec un tarif en baisse quasi-constante, et qui devrait se poursuivre en 2024. Entre la stabilisation du prix des matières premières, le ralentissement des ventes de véhicules électriques, et le développement d’une concurrence internationale sur le marché des batteries, les principaux fournisseurs chinois, qui représentent à eux seuls plus de 60 % de part de marché, chercheraient encore à réduire leurs coûts de production pour permettre une baisse supplémentaire du prix des cellules lithium, et ainsi conserver leur statut de leader.

Alors qu’il y a un an, les cellules LFP (lithium-fer-phosphate) carrées se négociaient entre 111 et 125 $/kWh, le prix est tombé à 83 $/kWh en août, pour passer à moins de 70 $/kWh en ce début d’année. Selon un rapport du média chinois 36kr, le tarif des cellules LFP pourrait même approcher les 41 $/kWh dans le courant 2024, soit presque trois fois moins que début 2023.

À lire aussi Pourquoi installer une batterie domestique est devenu rentable en France

Le marché de la batterie largement dominé par la Chine

Il faut bien l’admettre, la Chine domine le marché des batteries de stockage de la tête et des épaules, comme de nombreuses autres filières liées à l’énergie. On retrouve, dans le top 10 des plus grands fabricants mondiaux, 6 entreprises chinoises pour une part de marché totale de 64,7 %. En première position, le géant CATL possède à l’heure actuelle presque 40 % de part de marché et ne compte pas s’arrêter là puisque l’entreprise a pour projet de construire une usine d’une capacité de 100 GWh de production annuelle en Hongrie, pour un investissement total de 7,3 milliards d’euros. En seconde position, on retrouve BYD, une société chinoise qui commence à se faire connaître du grand public par le biais de sa filière automobile.

À travers le monde, des initiatives émergent pour tenter de se défaire de cette dépendance chinoise. En Europe, les groupes Stellantis, Mercedes et TotalEnergies se sont associés pour créer ACC, une entreprise dédiée à la fabrication de batteries. Ce partenariat a abouti à la création d’une gigafactory implantée dans le Pas-de-Calais, et qui devrait produire 2,5 millions de batteries de voitures électriques par an d’ici 2030. Forte de ce premier projet, l’entreprise a annoncé lancer trois autres projets de gigafactory grâce à une impressionnante levée de fonds de 4,4 milliards d’euros. Ces nouvelles usines devraient voir le jour en France, en Allemagne et en Italie. Du côté de la Serbie, l’entreprise ElevenEs vient de lancer sa première de production de batteries LFP, et espère pouvoir produire 800 000 batteries de véhicules par an d’ici 2028.

À lire aussi Pourquoi le prix des panneaux solaires chinois s’effondre

L’article Guerre des batteries : les prix vont-ils poursuivre leur chute ? est apparu en premier sur Révolution Énergétique.

Belle autonomie pour ce catamaran rapide à hydrogène

12 mars 2024 à 14:08

Élève modèle de l’électrification de son parc automobile, la Norvège s’attaque, depuis quelques années, à la décarbonation de son transport maritime. Outre la fée électrique, le pays s’appuie également beaucoup sur l’hydrogène pour atteindre son objectif. 

L’autorité maritime norvégienne vient d’approuver le design d’un navire de transport de passagers à grande vitesse propulsé grâce à l’hydrogène. Équipé d’une pile à combustible d’une puissance de plusieurs mégawatts, ce navire pourra atteindre une vitesse de croisière de 35 nœuds (65 km/h) et parcourir près de 260 km avec un seul plein. Outre sa propulsion hydrogène, le catamaran devrait se distinguer par l’utilisation d’une technologie à effet de surface qui permet de réduire les frottements entre la coque du bateau et l’eau.

Cette technologie offre de nombreux avantages comme un confort amélioré pour les 275 passagers, même par gros temps. Surtout, cette réduction des frottements entraîne un rendement énergétique élevé. Les entreprises chargées du projet, TECO 2030 et Umoe Mandal, annoncent une réduction de 55 % de la consommation du navire par rapport à navire classique à énergie fossile.

À lire aussi Ce navire batterie géant veut transporter l’électricité à travers les océans

La Norvège, pionnière du transport maritime décarboné

Tantôt dédiés exclusivement aux passagers, tantôt conçus pour le transport de véhicules, les ferries ont un rôle essentiel dans les transports en Norvège, en particulier pour traverser les nombreux fjords du pays. Néanmoins, ils sont généralement très émetteurs de CO2. Ou plutôt, ils étaient très émetteurs de CO2. Le pays s’est lancé l’objectif de décarboner le transport maritime, et en particulier ses nombreux ferries. Depuis 2021 déjà, le Bastø Electric et ses 139 mètres de long assurent la traversée du fjord d’Oslo par la seule force de moteurs électriques, tandis que le ferry Hydra de Norled est propulsé, lui, par de l’hydrogène liquéfié. Un peu plus au nord, l’entreprise Fjord 1 vient de commander 4 ferries électriques pour réaliser la liaison Lavik-Opendal. Ces quatre navires auront la capacité de transporter 120 voitures par trajet et surtout, ils seront en grande partie autonomes, que ce soit lors de la navigation ou pendant les manœuvres d’accostage.

À plus petite échelle, une jeune startup répondant sous le nom de Hyke a mis au point un ferry fonctionnant à l’hydrogène et destiné aux grands centres urbains. Le premier prototype est en cours de test dans la ville de Arendal, en Norvège.

L’article Belle autonomie pour ce catamaran rapide à hydrogène est apparu en premier sur Révolution Énergétique.

V2G, V2H, V2L : tout ce que vous devez savoir sur la charge bidirectionnelle

6 mars 2024 à 05:55

L’électrification progressive de nos moyens de transport ouvre de nouvelles perspectives d’usages qui se dévoilent petit à petit à coups d’acronymes et de termes parfois difficiles à comprendre. Pour rester à la page de l’innovation et de la mobilité, nous vous proposons de faire le point sur la charge bidirectionnelle et les termes qui y sont associés.

Au pays de l’automobile, l’acronyme est roi. Pendant des décennies, il a permis de distinguer les motorisations, les équipements intérieurs ou encore les innovations de sécurité. Et malgré la transition progressive de tous les constructeurs vers l’électrique, ce règne n’est pas prêt de se terminer. Dernier exemple en date, les V2G, V2H, V2L ou encore V2X qui fleurissent à mesure que la notion de charge bidirectionnelle gagne en importance.

En réalité, ces acronymes quelque peu barbares désignent différents types de recharge bidirectionnelle, un concept qui permet d’utiliser sa voiture comme un générateur électrique pour alimenter un ordinateur, une maison, ou même participer à l’équilibre du réseau électrique national. Pour vous aider à y voir plus clair, nous revenons dans cet article sur les principaux acronymes utilisés à ce sujet, et leur signification.

L’idée d’utiliser une voiture comme une batterie électrique part du constat qu’un véhicule passe 95% à l’arrêt sur un parking ou dans un garage. Face à cela, Jeremy Rifkin, dans son concept de troisième révolution industrielle, a proposé d’utiliser ces batteries pour participer à la gestion des intermittences générées par les sources d’énergies renouvelables comme l’éolien ou le photovoltaïque. Cette possibilité a très rapidement fait l’objet de publications scientifiques venant appuyer l’intérêt de la mise en place de cette charge bidirectionnelle. Dans le même temps, le Japon a également encouragé le développement de ce concept pour une meilleure gestion des situations d’urgence, notamment dans le cadre de séismes. La charge bidirectionnelle permet, dans ces cas, d’avoir un réserve d’électricité conséquente malgré une coupure de courant prolongée.

À lire aussi Quelle est la meilleure offre d’électricité pour recharger une voiture électrique ?

Les différents types de recharge

Pour différencier l’intérêt des différents types de charges bidirectionnelles proposées, les acronymes se sont multipliés à tel point qu’on peut facilement s’y perdre. Voici les principaux qui sont, aujourd’hui, utilisés.

V2L – Vehicle-to-load

Le V2L est, aujourd’hui, le type de charge bidirectionnelle le plus répandu. Il permet, grâce à la batterie de sa voiture électrique, de recharger ou d’alimenter des appareils électriques, de l’ordinateur portable à l’aspirateur en passant par la TV ou même un vélo électrique. Les constructeurs coréens Hyundai et Kia sont des références en la matière avec, par exemple, la Hyundai Ioniq 5 ou la Kia EV6. D’autres fabricants s’y mettent, notamment Tesla avec son Cybertruck.

Cette solution peut s’avérer particulièrement pratique en cas de coupure de courant, permettant d’alimenter ponctuellement quelques appareils. Plusieurs fabricants américains vantent également l’intérêt de cette solution pour remplacer un groupe électrogène sur chantier. C’est notamment le cas de Tesla avec son Cybertruck, ou Ford avec son F-150 Lightning. Enfin, les amoureux du camping y verront l’opportunité de pouvoir se faire un café sans difficulté au milieu de nulle part, ou même de conserver quelques bières au frais toute une journée.

V2H – Vehicle-to-home

Plus développée que le V2L, le V2H permet d’alimenter sa maison avec l’électricité contenue dans la batterie de sa voiture électrique via une borne bidirectionnelle. Cette solution permet de faire face à d’éventuelles coupures de courant avec très peu de contraintes, mais également d’optimiser sa facture d’électricité ! Il est ainsi possible de recharger sa batterie durant les heures creuses pour utiliser cette électricité plus tard, durant les heures pleines.

V2B – Vehicle-to-building

Le V2B reprend le même principe que le V2H, mais appliqué à n’importe quel type de bâtiment.

V2G – Vehicle-to-grid

Le V2G est la technologie qui est la plus amenée à se développer. Très similaire au V2H, elle permet, grâce à une borne de recharge bidirectionnelle, de transformer une voiture électrique en batterie de stockage permettant de lisser la production du réseau électrique national. Dans un contexte de développement des énergies renouvelables non-pilotables, cette technologie se montre particulièrement intéressante. Il est ainsi possible de stocker le surplus d’énergie issu des pics de production (par jour de grand vent par exemple), et de d’atténuer les pics de consommation par l’utilisation de l’énergie stockée dans les batteries (le soir à 18 heures par exemple).

Cette technologie est en passe de devenir courante sur un grand nombre de véhicules. Volkswagen vient, par exemple, d’annoncer la mise en place du V2G sur ses prochains véhicules de la gamme ID dotés d’une batterie de 77 kWh. Renault aussi, mise sur le développement du V2G avec sa future R5 qui intégrera la charge bidirectionnelle en V2L et V2G.

V2X – Vehicle-to-everything

Attention, piège ! Le V2X n’est pas une simple technologie de recharge bidirectionnelle. Ce terme désigne plutôt une technologie visant à permettre à un véhicule de communiquer avec tout ce qui l’entoure : les piétons, des objets, des infrastructures, le réseau électrique, etc. L’objectif final de cette technologie est de permettre une optimisation conjointe de la sécurité routière, de la consommation d’électricité, et de la circulation. Étant une part de l’IoT (Internet of Things), elle devrait principalement être rendue possible par l’utilisation de la 5G, et permettre une communication permanente entre tous ces éléments.

À lire aussi Combien de centrales faut-il construire pour électrifier toutes les voitures de France ?

Le Royaume-Uni, en avance sur le V2G

De l’autre côté de la Manche, le Royaume-Uni croit beaucoup au V2G pour stabiliser le réseau électrique, et vient d’investir près de 5,5 millions d’euros pour en accélérer le déploiement. Le pays souhaite ainsi devenir l’un des premiers à promouvoir massivement cette technologie. Outre les voitures électriques, les véhicules lourds sont également concernés. Toujours au Royaume-Uni, Veolia a récemment annoncé avoir mené à bien une expérimentation de charge bidirectionnelle sur deux véhicules de collecte des ordures ménagères. D’ici à 2040, l’entreprise ambitionne d’électrifier l’ensemble de ses 1800 véhicules de collecte et de les rendre compatibles avec le V2G, ce qui permettrait de mettre à disposition du réseau électrique national pas moins de 200 MW de flexibilité.

 

 

L’article V2G, V2H, V2L : tout ce que vous devez savoir sur la charge bidirectionnelle est apparu en premier sur Révolution Énergétique.

Cette startup peut-elle décarboner le transport maritime en utilisant de l’oxyde de calcium ?

22 février 2024 à 06:05

La startup anglaise Seabound vient d’annoncer avoir réussi à capturer jusqu’à 78 % du CO2 émis par un vieux porte conteneur lors d’une expérimentation de deux mois, et espère ainsi participer à la décarbonation du secteur maritime. Mais, derrière ce chiffre se cache un fonctionnement qui interroge. 

La startup londonienne Seabound vient d’annoncer avoir réussi une expérimentation de 2 mois, pendant laquelle elle est parvenue à réduire de près de 78 % les émissions de CO2 d’un navire porte-conteneur de la société de transport Lomar. Pour y parvenir, la startup a créé une installation qui s’installe sur un navire sous la forme d’un retrofit. Composée de plusieurs conteneurs, l’installation se branche directement sur le système d’échappement des machines diesel du navire.

Lorsque le navire est en fonctionnement, les gaz d’échappement circulent, à température ambiante, à travers des galets d’oxyde de calcium, plus connus sous le nom de chaux vive. Cette chaux vive réagit au contact du CO2, et capture ce dernier pour former du carbonate de calcium, autrement dit du calcaire pur. Selon la startup, ce système multiplie les avantages, puisque la chaux vive nécessaire au fonctionnement de cette solution est bon marché, et le calcaire obtenu peut être utilisé dans de nombreux secteurs comme la construction ou l’agriculture. Il peut ainsi être revendu une fois le navire à quai.

Installation-pilote de Seabound / Image : Seabound

Une solution qui prend de la place

Les émissions de CO2 du transport maritime sont évaluées, en moyenne, à 3 g de CO2 par tonne-kilomètre. Si on prend un porte-conteneur de taille moyenne, c’est-à-dire environ 150 000 tonnes, cela représente 2 250 tonnes de CO2 émis pour une transatlantique. Sachant qu’une tonne d’oxyde de calcium peut absorber 785 kg de CO2, il faudra que le navire en question embarque plus de 2800 tonnes d’oxyde de calcium avant de partir. En conséquence, la mise en place de ce fonctionnement à grande échelle nécessitera une logistique importante et prendra une place non négligeable sur les navires. 

Déplacer les émissions de CO2, plutôt que les supprimer

La solution de Seabound repose sur la réaction chimique selon laquelle du dioxyde de carbone et de l’oxyde de calcium réagissent pour donner du carbonate de calcium : CaO + CO2 -> CaCO3.

Or, l’oxyde de calcium, autrement dit la chaux vive, est très rare à l’état naturel. Pour en produire, il est nécessaire d’utiliser… du carbonate de calcium ! Des minéraux calcaires sont chauffés dans des fours à haute température. Lorsque la température dépasse les 900 °C, le carbonate de calcium présent dans ces minéraux se transforme en oxyde de calcium moyennant un dégagement de dioxyde de carbone : CaCO3 -> CaO + CO2. C’est ce qu’on appelle la calcination du calcaire.

Lit de carbonate de calcium après capture du dioxyde de carbone / Image : Seabound

En d’autres termes, la solution proposée par Seabound ne permet pas de décarboner. Elle ne semble être, au mieux, qu’un déplacement de l’endroit d’où sont générées les émissions de CO2. Celles-ci n’ont plus lieu au niveau du navire, mais en amont, au niveau de l’usine de production d’oxyde de calcium. Dans le pire des cas, si le site de production de chaux vive n’a pas de mix énergétique décarboné, cette solution entraîne même des émissions supplémentaires de CO2 du fait de l’énergie nécessaire pour générer la réaction de calcination. Si la société ne le précise pas, on peut imaginer que cette solution ait l’intérêt de concentrer les émissions de CO2 en des lieux précis, à terre, ce qui permettrait de mieux les valoriser pour produire, par exemple, des carburants de synthèse.

Cette solution présente également l’avantage de capturer les sulfures, un gaz à effet de serre moins connu que le CO2, mais tout aussi néfaste. Sur ce point, la startup annonce avoir réussi à en capturer 90 % durant cette expérimentation.

À lire aussi Des cargos écolos grâce à l’ammoniac vert

Un intérêt financier ?

L’intérêt de cette solution pourrait par ailleurs être d’ordre financier pour les entreprises de transport maritime. En effet, le prix de la chaux vive s’échangeait, fin 2023, à 164 dollars la tonne en Europe. Le carbonate de calcium, en fonction de sa pureté, coûte plus cher. En Belgique, lors du dernier trimestre de 2023, il coûtait aux alentours de 340 dollars par tonne. Ainsi, la revente du matériau obtenu grâce au système mis au point par Seabound pourrait compenser le prix de l’installation et de la maintenance du système, voire même générer un bénéfice.

 

L’article Cette startup peut-elle décarboner le transport maritime en utilisant de l’oxyde de calcium ? est apparu en premier sur Révolution Énergétique.

La Corée du Sud dans les starting-blocks pour la propulsion nucléaire civile

20 février 2024 à 15:20

Les acteurs de la construction navale se lancent enfin dans la décarbonation du transport maritime. Après Fincantieri, c’est au tour du géant coréen KSOE de se lancer dans la propulsion maritime nucléaire en s’associant à TerraPower. 

L’entreprise HD Korea Shipbuilding & Offshore Engineering, plus connue sous l’acronyme KSOE, est en passe de se lancer dans la course à la propulsion nucléaire dans le secteur maritime. L’entreprise vient, en effet, de signer un accord avec TerraPower et Core Power pour le développement conjoint d’un réacteur nucléaire destiné à une application maritime.

Chez KSOE, l’idée n’est pas nouvelle puisque l’entreprise avait investi, dès novembre 2022 par l’intermédiaire de sa maison mère HD Hyundai, 30 millions de dollars dans la startup TerraPower, fondée par Bill Gates. Désormais, les deux entreprises veulent aller plus loin et développer un réacteur nucléaire commun sur la base de la technologie de réacteurs à sels fondus développée par TerraPower.

À lire aussi Des containers transportés par voilier : une coopérative révolutionne le fret maritime

Décarbonation du secteur maritime : l’union fait la force

Depuis peu, on constate une accélération des projets de décarbonation dans le secteur maritime international et passant en particulier par la propulsion nucléaire. L’Organisation Maritime Internationale vient d’ailleurs de valider un objectif net zéro carbone d’ici 2050. En Europe, c’est le constructeur italien Ficiantieri qui a ouvert le bal des porte-conteneurs nucléaires en s’associant à Newcleo et RINA. En Chine, c’est le chantier naval Jiangnan qui se lance dans la propulsion nucléaire grâce à son projet KUN-24A, d’une capacité de 24 000 conteneurs standards (EVP).

Mais c’est bien en Corée du Sud que la course pourrait véritablement battre son plein. Outre cet accord trouvé par KSOE, Samsung Heavy Industries s’est, de son côté, associé à Korea Hydro & Nuclear Power Corp et au dannois Seaborg Technologies pour produire son propre navire nucléaire. Enfin, Hanwha Ocean Co. (anciennement Daewoo) a également lancé dans son propre projet avec la société ThorCon.

Outre les travaux de recherche et développement avec TerraPower pour le développement de ce SMR à sels fondus, KSOE devrait participer à la mise en place à la mise en place de standards et de classifications pour l’énergie nucléaire dans le secteur maritime avec l’Agence internationale de l’énergie atomique (IAEA).

L’article La Corée du Sud dans les starting-blocks pour la propulsion nucléaire civile est apparu en premier sur Révolution Énergétique.

Quel bonus pour une voiture à hydrogène ?

20 février 2024 à 06:49

Le décret publié le 13 février 2024 change les montants versés au titre du bonus écologique pour l’achat d’un véhicule électrique. Qu’en est-il pour la catégorie spécifique des voitures à hydrogène ?

Dans la famille des véhicules électriques, la version la plus courante est celle des voitures à batterie. Mais les véhicules à hydrogène font également partie de cette catégorie des véhicules électriques. La différence réside dans le fait que les voitures à hydrogène sont équipées d’une pile à combustible qui leur permet de transformer l’hydrogène en électricité. Les véhicules à hydrogène sont beaucoup plus onéreux que les modèles électriques classiques et donc beaucoup moins répandus.

À lire aussi Ce mini train autonome à hydrogène peut-il sauver les petites lignes ?

Le bonus écologique en baisse pour les ménages les plus aisés

Mais à l’heure de la parution du décret du 13 février 2024 sur le bonus écologique versé pour l’achat d’un véhicule propre, il est intéressant de se pencher sur les règles applicables aux voitures à hydrogène.

Le récent décret modifie les montants accordés pour l’achat d’un véhicule électrique. Voici ce qu’il faut en retenir. Les ménages les plus aisés sont touchés par une baisse de l’aide puisque le montant maximum qui leur sera accordé passe à 4 000 euros, contre 5 000 euros l’an passé.

À lire aussi Pourquoi le train à hydrogène n’intéresse plus l’Allemagne ?

Les ménages modestes priorisés par le bonus écologique pour l’achat d’un véhicule propre

Quant aux ménages modestes, le montant du bonus reste inchangé à 7 000 euros. Et le palier entre foyers modestes et aisés est augmenté en 2024. Le revenu fiscal de référence pris en compte pour passer d’une catégorie à l’autre passe de 14 089 à 15 400 euros.

Par ailleurs, le bonus écologique est désormais supprimé pour l’achat d’un véhicule propre d’occasion, que l’achat soit réalisé par une personne physique ou morale.

À lire aussi C’est parti pour l’hydrogène d’origine nucléaire

Un régime plus strict pour les entreprises

Le gros changement concerne les entreprises qui ne pourront plus obtenir de prime pour l’achat d’un véhicule particulier. Et pour les utilitaires électriques, l’aide sera désormais de 5 000 euros lorsque l’achat est réalisé par une personne physique et 3 000 euros lorsqu’il s’agit d’une personne morale.

Cela vise les véhicules électriques, mais existe-t-il un dispositif spécifique pour les voitures à hydrogène ? Non, le texte ne fait aucune distinction au sein de la famille des véhicules électriques. L’achat d’un véhicule à hydrogène donne donc droit aux aides classiques précitées. L’absence de régime spécifique pénalise l’achat des voitures à hydrogène puisqu’elles sont plus chères à l’achat.

L’article Quel bonus pour une voiture à hydrogène ? est apparu en premier sur Révolution Énergétique.

Lancement du premier avion taxi électrique commercial à Dubaï en 2026

18 février 2024 à 06:54

Une entreprise américaine vient de signer un accord d’exclusivité de 6 ans pour le lancement d’un service de taxis volants commerciaux dans la capitale des Émirats Arabes Unis dès 2026. Cette annonce marque une étape importante dans le développement des eVTOL comme futur de la mobilité urbaine.

On n’est pas encore dans le Cinquième Élément, mais on s’en rapproche. Après des années de promesses, le marché des eVTOL (electric vertical take-off and landing), ces véhicules à propulsion électrique à la croisée des drones, des hélicoptères et des avions, commence enfin à décoller avec en tête la société Joby Aviation. La startup américaine, qui a récemment fait l’actualité en proposant une démonstration de vol de son prototype dans la ville de New York, devrait fournir à Dubaï ses premiers taxis volants électriques dès 2026, par le biais d’un contrat d’exclusivité de 6 ans.

Ce contrat porte sur des premières phases de tests dès 2025, et sur le lancement de vols commerciaux à partir de 2026. Pour l’occasion, l’entreprise Skyports va construire quatre vertiports au niveau de l’aéroport de Dubaï, au Palm Jumeirah, à la Marina et dans le centre-ville. Selon Joby Aviation, ses taxis volants permettront, en seulement 10 minutes, de réaliser un trajet qui prend habituellement 45 minutes en taxi classique.

Le eVTOL développé par Joby Aviation pourra embarquer 4 passagers en plus du pilote, voler à une vitesse maximale de 320 km/h et parcourir 161 km en une seule charge.

À lire aussi Ce gros chèque de l’État doit propulser l’avion zéro-émission

Les eVTOL, futur de la mobilité urbaine ?

Depuis une quinzaine d’années maintenant, les projets d’eVTOL se multiplient à travers le monde. Et pour cause, ces véhicules volants électriques, dont le nombre de place est généralement limité à 4 ou 6 personnes, disposent de nombreux avantages face aux hélicoptères. Ils sont plus silencieux, moins polluants, et disposent d’une meilleure efficacité énergétique que ces derniers. De plus, les vertiports, plateformes nécessaires à leur décollage ou leur atterrissage, sont moins grands que les héliports. Côté tarif, ils pourraient être bien plus abordables que les vols en hélicoptère grâce à l’utilisation de la propulsion électrique et à des besoins en maintenance nettement inférieurs.

Si les eVTOL promettent d’être plus efficaces et mieux adaptés à l’espace urbain que les hélicoptères, de nombreuses interrogations demeurent à leur sujet, tant au niveau des nuisances sonores que de leur impact environnemental ou encore de leur tarif. Les prochains Jeux Olympiques de Paris pourraient nous apporter un début de réponse, puisque l’entreprise Volocopter devrait y proposer des services de taxi pendant la durée de la compétition à titre expérimental.

L’article Lancement du premier avion taxi électrique commercial à Dubaï en 2026 est apparu en premier sur Révolution Énergétique.

❌
❌